
Spreadsheet-Driven Web Applications
Edward Benson

MIT CSAIL
32 Vassar St., Cambridge MA

eob@csail.mit.edu

Amy X. Zhang
MIT CSAIL

32 Vassar St., Cambridge MA
axz@csail.mit.edu

David R. Karger
MIT CSAIL

32 Vassar St., Cambridge MA
karger@mit.edu

ABSTRACT
Creating and publishing read-write-compute web applica-
tions requires programming skills beyond what most end
users possess. But many end users know how to make spread-
sheets that act as simple information management applica-
tions, often with computation. We present a system for creat-
ing basic web applications using such spreadsheets in place of
a server and using HTML to describe the client UI. Authors
connect the two by placing spreadsheet references inside
HTML attributes. Data computation is provided by spread-
sheet formulas. The result is a reactive read-write-compute
web page without a single line of Javascript code. Nearly all
of the fifteen HTML novices we studied were able to con-
nect HTML to spreadsheets using our method with minimal
instruction. We draw conclusions from their experience and
discuss future extensions to this programming model.

Author Keywords
Web design; Spreadsheets; End-user programming;
Information architecture

ACM Classification Keywords
H.5.4. Information Interfaces and Presentation:
Hypertext/Hypermedia - User Issues

INTRODUCTION
Spreadsheets are ubiquitous information management tools
that cross technical and cultural divides. College students
use them to plan parties, financial analysts use them to sway
markets, and many companies use spreadsheets instead of
databases to manage data [28]. According to the 2012 United
States Census, over 55 million people in the United States
“manipulate data with either spreadsheets or databases at
work [26].” But while these authors use spreadsheets for a
diversity of information management tasks, they have lim-
ited ability to view, edit, and share their data outside the
grid-based interface spreadsheets provide. Showing a styl-
ized schedule for an event planned with a spreadsheet, for ex-
ample, typically requires copying and pasting raw data from
the spreadsheet into the finalized design document.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST 2014, October 5–8, 2014, Honolulu, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3069-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2642918.2647387

+

+

=

=

Spreadsheet HTML Web App

<input
 connect="B2">

Figure 1: Our user study participants used Quilt to author the
connective code to turn these HTML files and spreadsheets
into reactive apps after a brief tutorial.

There is a separate overlapping community of people who
know how to edit HTML. The size of this community is dif-
ficult to assess, but web literacy is undoubtedly growing. The
ACM Computer Science Standards cite HTML and CSS au-
thoring as basic components of computer literacy at the K-12
level [11]. Web authors build pages for a variety of purposes,
ranging from personal to public to collaborative. Like spread-
sheet authors, web authors face a steep hurdle once they try to
move beyond the basic capabilities HTML offers. To create a
web page with data storage and computation, an HTML au-
thor must learn to write client-server programs and possibly
to design and administer databases.

In both cases, users have access to a tool that is specialized
for one type of information-centric activity, such as data man-
agement or hypertext publishing, but does not natively sup-
port other activities. Past approaches to these two problems
either focus heavily on providing pre-made widgets or tem-
plates [14] [27] or use new authoring and deployment envi-
ronments that replace the user’s existing ones [29] [22].

This paper stems from the intuition that spreadsheets and
HTML are complimentary technologies waiting to be joined.
Spreadsheet users enjoy structured data and computation but
lack the ability to view and edit data in whatever flexible, styl-
ized fashion suits them. HTML authors can create such styled
displays, but studies show they both lack and greatly desire
the ability to perform information management tasks such as
data collection, storage, and retrieval [22] [24] [6], exactly
what spreadsheets can step in to provide.

This paper presents and evaluates a system called Quilt1.

1Source code is available at treesheets.org and a deployed ver-
sion ready for use is at cloudstitch.io

treesheets.org
cloudstitch.io

Using Quilt, end users with basic spreadsheet and HTML-
editing capabilities can skin their spreadsheets with a web
page that serves as a more stylized alternative to the spread-
sheet interface. From the web developer’s perspective, Quilt
enables rapid prototyping of reactive information manage-
ment applications. Quilt uses relational annotations in HTML
that do not require the author to understand dataflow. Using
a tree synchronization algorithm, Quilt provides a reactive
web experience based on these annotations. We show that
simple information management applications, complete with
sorting, searching, and table joins, can be crafted with Quilt,
and demonstrate how inter-document formulas and spread-
sheet scoping can support multi-user applications.

We then report results from a user study of 15 end users with
basic HTML editing ability. After learning our method for fif-
teen minutes, they performed a series of authoring tasks: (1)
connecting spreadsheets to web pages when provided both
and (2) authoring (and then connecting) spreadsheets from
scratch when provided only an HTML UI mockup. Partici-
pants were nearly all able to complete the tasks successfully
in only a few minutes. We use videos, surveys, and interviews
from this user study to evaluate Quilt’s learnability and reflect
on debugging with this method of authoring.

QUILT
We begin with a brief section to explain the Quilt language
and operations. Assume a sample task of building a web in-
terface to collaboratively plan a party with friends. The fol-
lowing spreadsheet contains a list of food items, their costs,
the person responsible, and a computed cell for total cost:

1

3
2

BA
Item

Cheese
Crackers $5.00

$15.00
Cost

C

?
Casey
Person

4 Wine ?$15.00

D

$35.00
total

Quilt reactively connects an HTML web interface to the
spreadsheet using four new HTML attributes: connect,
delete, show-if, and hide-if. Depending on where
they are used, these attributes can synchronize data between
the web page and spreadsheet, add new rows, delete rows, and
show/hide web elements depending on spreadsheet contents.

The following code snippet and output demonstrates how to
connect HTML elements to spreadsheet cells. Cells can con-
tain either plain text or computed values. In both cases,
changes made on the spreadsheet flow automatically to the
web page, replacing the element content. Changes to the web
element content, through direct user action or Javascript ma-
nipulation, propagate automatically back to the spreadsheet.

cost $35.00

By placing the attribute connect="rows", Quilt users can
designate that an HTML element’s contents should repeat
once per row in the spreadsheet. Each repetition corresponds
to the data in a row. Inside a repetition, one can connect
HTML elements using the names of columns, or offer row
deletion by placing delete="row" on a button. As before,

runtime modifications, insertions, or deletions are synchro-
nized between the web page and the spreadsheet.
<div connect="rows">
 <div class="party-item">
 item
 <button delete="row">x</button>
 </div>
</div>

Cheese
Crackers
Wine

x
x
x

When a form carries the attribute connect="rows", sub-
mitting that form appends a new row. Input elements con-
nected to column names provide the new values for that row.
When the new row is appended to the spreadsheet, data flows
back to any connected elements on the web page.

<form connect="rows">
 Item: <input connect="Item">
 Cost: <input connect="Cost">
 <button>Add</button>
</form>

Item:

Cost:

Add

Finally, the commands hide-if and show-if hide and
show a web element based on whether the connected cell is
“Truthy,” represented by anything other than an empty cell,
the string ‘FALSE’, or the number 0. This example limits the
output to show only food items with no assigned person:

<div connect="rows">
 <div class="party-item" hide-if="Person"> … </div>
</div>

Using these annotations, the Quilt engine can turn a static web
mockup and a spreadsheet into a simple read-write web app,
with the spreadsheet adding computation as well.

METHOD
Our design goals were to reuse existing HTML and spread-
sheets as much as possible, while minimizing the introduc-
tion of “programming-like” concepts such as data-flow and
ordered statements. Our hypothesis was that doing so would
transform a task that today involves programming into one
that feels like a natural extension of spreadsheet and HTML
authoring. Our method consists of two components: web re-
lations and the spreadsheet-view pattern.

Web Relations
Quilt’s programming model, web relations, is a refinement
of our work on the Cascading Tree Sheets project [5], which
provides a language for merging data structures across the
web. Web relations adhere to what we call the CARB
properties—container-centric, annotational, relational, and
bidirectional—which lets authors feel as if they are simply
authoring HTML, but enable a runtime engine to transform
that HTML into a reactive information management interface.
To explain these properties, consider the following two code
fragments, written in traditional web template style on the left
and web relations on the right:

 {for row in rows}
 {{row.Item}}
 {end for}

<ul connect="rows">
 <li connect="Item">Title

Web Template Style: Web Relation Style:

Container-centrism concerns language semantics. When tra-
ditional web templates are rendered, the template instructions
are removed. The output of a web template is thus not a web
template itself, and it lacks provenance information to trace
back regions of dynamic data to their source. Web relations
annotate HTML containers with statements about their con-
tents. The UI can be rendered without removing relations,
meaning that the output document in the browser is also a
working template that can be reused and respond to new data.

Annotationality concerns the programming interface. Tradi-
tional web templates intermingle sequential instructions with
the template output. Viewed in a web browser, these instruc-
tions render awkwardly alongside the HTML. Web relations
occupy the attribute space, allowing for example data that is
overwritten at runtime. This means the dynamic production
template is also a static design artifact.

Relational templating is a contrast to imperative-style tem-
plates. Imperative templates provide instructions for a spe-
cific task, such as looping over an array and printing some-
thing. Relational templates simply represent relationships be-
tween data structures. Just like database relations, they can be
exploited in different ways depending on context. In Quilt’s
case, context is the type of object participating in a relation
and the data-change events on those objects. For example,
consider three different ways the connect relation is inter-
preted based on context. If a div is connected to rows, its
contents will be repeated once per row. If a form is con-
nected to rows, it will instead append a new row when the
form submit event occurs. If a div is connected to A4, it
will mirror the value of cell A4. The connect attribute is
a relation between structures, not an imperative command,
enabling the runtime system to automate a variety of context-
dependent tasks that otherwise would require custom code.

Bidirectionality concerns both language semantics and run-
time engine design. Traditional web templates are inter-
preted as a one-way functions that accept data and produce
an HTML fragment that is indistinguishable from a static
HTML. Web relations define structural relationships that can
be exploited in either direction, and container-centrism guar-
antees the durability of these relationships through the ren-
dering process. A web relational engine can produce dynamic
HTML from a data structure, but then also update either the
HTML or data structure when the other changes at runtime.

Spreadsheets as “Models with Benefits”
The second part of our method is replacing the abstract model
of the Model-View pattern with spreadsheet software. This
means that all data and computation is visible, editable, and
debugable in a well known environment, not hidden behind
controller code and database APIs. Many bugs can be identi-
fied and resolved entirely as spreadsheet issues, independent
of the HTML interface, or vice versa.

Web spreadsheet software (like Google Spreadsheets) also
supports many database-like operations not supported by
desktop spreadsheets. Formula-based filtering, sorting, and
table-joining, as well as inter-document addressing and web
API calls are all possible and can be parameterized by other

connect="Parameters!B2"

1 The web user enters a text query.

Cole

2 This triggers an update to a cell
value in a special Parameters
worksheet.

…

3 This causes a NameSearch
 column to change in a worksheet
(this example used the RSVPs
worksheet but it could also be linked
copy.) Column D is defined with:

=NOT(ISERR(FIND(
 Parameters!B2, A3)))

4 When the browser-based Quilt
 engine polls for data updates,
it pulls down this new table and
updates the web view.

connect="RSVPs!rows"
show-if="NameSearch"

Figure 2: Demonstration of how Quilt’s two-way data sync-
ing enables data operations like reactive text search using web
elements to parameterize spreadsheet functions.

cells. This open up real possibility for spreadsheets to provide
a programming environment for non-trivial web applications.
Figure 2 shows a portion of a multi-sheet wedding planning
app we built to demonstrate this functionality. When the web
user types into a search box on the web page, Quilt synchro-
nizes that with a cell in a Parameters worksheet. This causes
a column in the RSVPs sheet to recompute whether each row
is a search result. Quilt synchronizes the new column data to
the browser, where it toggles visibility of each list item.

The Discussion section delves into spreadsheet app design
patterns, like partitioning different elements of the model and
computation into separate sheets and handling multiple users.

SYSTEM ARCHITECTURE
Quilt is implemented as a Javascript library that integrates
into a web page to simulate browser-native support for our
extra HTML attributes. Figure 3 shows an annotated view
of Quilt’s internal architecture, along with the timeline of
data operations Quilt performs. For re-implementors, the key
point to extract from this figure is the way in which Quilt
constructs tree-shaped proxy representations of all objects
it is aware of. Each proxy tree listens to changes on the
real object it represents (an HTML node or spreadsheet ob-
ject) and triggers a synchronization process when a change
occurs. This synchronization is enacted as manipulations of
proxy tree nodes. A proxy tree is responsible for translat-
ing structural manipulations into changes in the root object it
represents. While our implementation uses Google Spread-
sheets, this proxy-tree design means any object (Excel, CSV,
JSON, Database) could be integrated into Quilt’s synchro-
nization mechanism so long as it is wrapped in a proxy tree
and provides a language to address nodes in that tree.

<html>
 <head>
 <script src="quilt.js"></script>
 <link rel=“gsheet" key="KEY" />
 </head>
 <body>

 <ul connect="rows">
 <li connect="name">

 <form connect="rows">
 <input connect="name">
 <button>Add</button>
 </form>
 </body>
</html>

HTML Page
Proxy HTML Representation Proxy Spreadsheet Representation

body

span

li

form

input

Inside the Quilt Engine (Javascript)

 Proxy Trees. On page load, Quilt
 constructs tree data structures
that proxy both the HTML page and all
linked spreadsheets (multiple
spreadsheets can be given names).

1 Listeners. Each proxy node
 listens to the object it proxies. If
push notifications are not available
in the spreadsheet service, repeated
polling can be used.

3

Spreadsheet

Worksheet 1

as cells

A B

1 2

“2”
This node has the value 2 because

of the spreadsheet equation
=count(A:A)

C

 Relations. Quilt constructs relations based on
 special attributes on HTML nodes. The type of the
relation depends upon both the attribute and items
connected. Even though only the Connect attribute was
used above, three kinds of relationships result. Cell-based
(red), Table-based (blue), and Item-property (green).

2

as table

Item 1 Item 2

name

"Larry"

name

"Curly"

ul

 Synchronization. Both on
 page load, whenever a
change listener fires, and when a
form submits the Quilt engine
undergoes a tree alignment
process to make sure all internal
trees align. The original objects
(web page and spreadsheet) are
updated as the internal proxy
representation is updated.

4

1

23
4

3
4

Spreadsheet

Figure 3: Quilt maintains mirrored, tree-shaped representations of the HTML and spreadsheet. It aligns these representations,
rewriting the source objects whenever synchronization is appropriate, such as on web page load or user input.

EVALUATION
We performed user studies of 15 non-programmers to under-
stand whether Quilt’s approach can be learned and applied by
individuals with only basic spreadsheet and HTML editing
knowledge. Specifically, our study examines three questions:
armed with a basic understanding of Quilt, can end users:

1. Connect an HTML interface mockup to a spreadsheet to
create a web app?

2. Design and build a spreadsheet to support an HTML inter-
face mockup provided to them, and then connect it?

3. Debug Quilt applications with only a browser and the
spreadsheet?

Thirteen of the fifteen subjects were able to complete all tasks
given to them. Combined with participant surveys and inter-
views, the data suggests Quilt’s approach takes a step toward
enabling this population to construct a class of simple inter-
active web applications they are otherwise unable to build.

Participants
We recruited 15 participants by visiting four local-area pro-
gramming education organizations that provide introductory
web page authoring classes. According to our survey, six par-
ticipants had only been using HTML for “a few months” or
less, nine for a year or less, and all but one for two years
or less. Nine participants reported that they cannot write
HTML without frequently referring to documentation, nine
had never used the HTML form tag2, and five had never used
the table tag. All participants had used a spreadsheet, and
all but one had used Google Spreadsheets. All but four had

2That most participants had not used the form tag is indicative of
how hard it is for this population to build read-write web pages, as
form elements are only useful in conjunction with a server-side app.

used a spreadsheet formula. Only four reported that they “un-
derstood the concepts” of programming. Of these four, only
two had written a computer program before. Both had “about
a year” of experience and self-rated as beginners.

Teaching Session
We provided each participant with a fifteen minute private
teaching session that was scripted by a worksheet. Using ex-
amples, this three-page worksheet presented the main idea
behind Quilt (2 minutes), explained the difference between
“cell based” thinking—good for fixed inputs and outputs like
a math equation—and “table based” thinking—good for lists
of items with named properties (3 minutes), and introduced
Quilt commands using an example weather report web site
backed by a spreadsheet of forecasting data. Participants
used this app to practice displaying data, accepting input,
and showing/hiding HTML elements for both cell- and table-
based addressing (10 minutes).

Tasks
We began the study with only two tasks, but expanded this
to four half-way through because participants were complet-
ing the tasks with greater success and in less time than we
anticipated. We wanted to both take advantage of the extra
time and also proactively address the concern that our study
was not targeted at the right level of difficulty. Eight subjects
were only presented the first two tasks, and the final seven
were given all four. Each task, as well as screenshots from
participant sessions, is shown in Figure 4

For each task, we provided the participant with three win-
dows: a web browser with a Google Spreadsheet, a text ed-
itor with an HTML page, and a web browser rendering that
HTML page. The text editor was pre-loaded with an HTML
mockup for an application we wanted them to finish. This

HTML Interface Mockup Spreadsheet

<ul connect="rows">

 <input connect="done" type="checkbox" />
 Example Task

<form connect="rows">
 <input connect="task"/>
 <button>Add</button>
</form>

<tr>
 <td>Loan Amount</td>
 <td><input connect="B2" /></td>
 </tr>
 .. (other two inputs now shown) ..
 <tr>
 <td>Monthly Payment</td>
 <td connect="B7">result</td>
 </tr>
 <tr>
 <td show-if="B8">Amazing Rate!</td>
 </tr>

Omitted for space. Required:

provided

provided

provided for all tasks for data and computation
Quilt Connections

participants needed to add the highlighted sections
Finished Web App

backed by the spreadsheet
Ta

sk
 1

Ta
sk

 2
Ta

sk
 3

Ta
sk

 4

two connect="rows"
four connect="{column name}"

Omitted for space. Required:
six connect="{cell coordinate}"

created by participant

created by participant

Figure 4: Tasks performed in our user study. For Tasks 1 and 2, participants were given an HTML interface mockup and a
spreadsheet containing data. They were asked to author the necessary connections to connect the two documents as an application.
The highlighted text in the HTML contains the necessary additions. For Tasks 3 and 4, participants were only given a user
interface mockup and had to additionally design and implement the spreadsheet necessary to implement the mockup.

allowed us to study the participant’s spreadsheet and Quilt
activities without worrying about the separate task of web de-
sign, since in theory they all knew basic static HTML author-
ing. This UI mockup was pre-connected to the Spreadsheet
(with a script and link tag in the head) but contained
no other Quilt commands. The subject was briefed about the
application purpose using a script and then asked to built it.

Tasks were always administered in the same order, and we
recorded each task with a screen capture program. The partic-
ipant was asked to work slowly and speak their thoughts aloud
as they programmed. During each task the experimenter was
silent except to notify the participant if they had made an un-
detected spelling error such as conect instead of connect
(we informed them of the mistake’s existence but not loca-
tion).

Tasks 1 & 2 were designed to test whether the subject could
learn Quilt and apply it without assistance. In these tasks,
the user was provided a finished spreadsheet along with the
HTML mockup. The activity required of them was to iden-
tify how this mockup should be connected to the spreadsheet

to turn it into an application and to make those connections
correctly. Task 1 was a mortgage calculator, requiring cell-
based connections and the ability to perform output, input,
and conditional visibility. Task 2 was a To-Do list, requiring
table-based connections and the ability to perform enumera-
tion, output, and row-appending operations.

Tasks 3 & 4 were designed to see if participants were capa-
ble of designing and implementing a spreadsheet-based data
model to support a Quilt-based application. For these tasks,
we provided them with only an HTML mockup and an empty
spreadsheet. The activity required of them was to identify the
data needs of the UI mockup, construct a spreadsheet to meet
those data needs, and then use Quilt to connect the two. Task
3 was a chat website, in which users could post messages to a
bulletin board. Task 4 was a math tutor that displayed various
arithmetic functions of two input variables.

Result: Learning and Applying Quilt
Before learning Quilt, we showed each participant screen-
shots of Tasks 1 and 2 and asked how long it would take them
to connect the finished web mockup, if provided, to a data

source. Most estimated it would take many hours or work-
days. Several provided time estimates but added that they
had no idea how to actually go about the task, and two said
they would not be able to complete the tasks at all (“not with
all the time in the universe” said one). Inexperience likely
drives much of the high estimate variance, but these estimates
at least indicate perceptions of task difficulty.

After learning Quilt, fourteen of the fifteen participants com-
pleted Task 1 without any assistance, and thirteen of fifteen
completed Task 2 without any assistance. The time it took to
complete these tasks was four minutes or less for most partic-
ipants, dramatically less than their estimates. Figure 5 shows
timing information.

While the web apps in these tasks were simple, they required
a set of skills these participants largely lacked using tradi-
tional methods: reading, writing, and modifying dynamic
web data, appending new data items, and conditionally dis-
playing user interface elements. That they could learn to ac-
complish these tasks with Quilt in only fifteen minutes indi-
cates that Quilt’s programming model translates these core
data management operations into an approachable interface
for non-programmers. One participant had neither written a
computer program nor used HTML’s form or table before.
Before learning Quilt, she was unable to describe how one
might build the Mortgage Calculator or To-Do List with cur-
rent technologies. After learning Quilt and completing both
tasks successfully, she remarked:

It feels amazing. I thought it would take me three 8 hour
days to do something like this. And then to be able to
just do it with Google Docs which is something that I
use so frequently, and for it to be so easy and to make so
much sense, yeah, it’s really cool.

The tasks were not all completed correctly on the first try,
however. Twelve participants experienced a non-spelling er-
ror in at least one task, and five experienced an error in both
tasks. In all cases where the participant ultimately completed
the task correctly, they were able to identify and fix the er-
ror by reloading and sometimes experimenting with the web
page and then altering the code they had written. More about
this debugging behavior is in the Debugging section.

Designing Spreadsheets to Back Web Apps
Recall that Tasks 3 and 4 were added half way through the
user study to see what would happen when participants were
burdened with more of the work. These tasks, shown in Fig-
ure 4, only provided a web interface mockup. Participants had
to create a spreadsheet to support that mockup themselves and
then connect it to the HTML page.

We intended to offer seven participants Tasks 3 and 4, but two
had to leave after completing Tasks 1 and 2 and could not be
offered the tasks. Of the five that remained and were offered
the tasks, all completed both tasks successfully. Their times
are shown in Figure 5.

How difficult was this additional data modeling step? While
we can not make strong conclusions from only five data
points, timing information from the videos along with inter-

45 46030 could not
estimate

20

Estimated Time to Complete

Actual Time to Complete

minutes weeks
3 4 85

hours

Mortage Task To-Do Task

2 3 4
workdays

minutes
1 2 3 4 6 7 8 9 11 125 10 Gave Up

Chat Task Math Task

Figure 5: Estimated and Actual time to complete tasks in
our study. Please take careful note of the x-axis units: most
participants estimated that it would take them many hours or
days to complete these tasks before learning Quilt. The actual
time to complete these applications was a few minutes.

views was interesting. All five participants spent less than
one-third of time working inside the spreadsheet for the Chat
application—a table-based app. But four of five participants
spent more than half of the time working inside the spread-
sheet for the Math application—a cell based app.

Some of this difference is simply due to the fact that the math
application required more spreadsheet work. But the recorded
videos and audio make it clear that the lack of spatial co-
herence when addressing cells individually posed problems
as well. All five users wrote the Chat spreadsheet (a table)
correctly on their first attempt, but only two wrote a work-
ing Math Tutor spreadsheet without having to make structural
changes. The common problem seems to have been that the
HTML mockup contained a list of math functions, but the
data model to support this list did not have any particular list
structure to it. This left them unsure of the physical arrange-
ment of data in the spreadsheet to support this interface.

One caught her mistake almost immediately, but the other two
created finished tables of math functions, repeating X and Y
once per row with a different math result in the third column.
They caught their errors when trying to connect the spread-
sheet to the web mockup. At this point, the modeling error
was apparent because it was not clear how to make the con-
nection. When asked what he was thinking the moment he
revised the table, one replied, “Once I went through the pro-
cess, used my hands instead of my brain, it started making
more sense. Once I started trying to connect it to the HTML.”

Debugging Behavior
Quilt does not offer any particular debugging assistance past
that already in the browser and spreadsheet. One important
question is how to best service the debugging needs of SV
app authors who are unfamiliar with traditional programming
and debugging concepts. To make progress toward answering
this question, we coded all successful Task 1 and 2 videos to
mark when non-spelling errors occurred and how long it took
to fix them after being noticed. In these 27 videos, we found
19 errors across 12 (of 15) participants, all of which were

identified and fixed by the participant without assistance. The
time it took to fix these errors had high variance—the stan-
dard deviation (77s) was above the mean (69s)—likely due
to different skill levels and error context.

While the data set is too small to make strong conclusions, the
errors could be clustered into three categories. Static errors
(13 recorded) were those immediately apparent upon viewing
the web page, such as connecting and overwriting the wrong
HTML element. No matter what the spreadsheet value, these
are obvious. Dynamic errors (3 recorded) were those that
might be immediately apparent, but might also require exper-
imenting with different data inputs to surface, such as con-
necting a show-if to the wrong cell. If the right cell and
the wrong cell had the same “truthiness” value, the error may
not be apparent until data changes to reveal the inconsistency,
tempting a novice to prematurely declare a correct implemen-
tation. Omissive errors (3 recorded) were those due to miss-
ing functionality or Quilt statements so mistyped that the page
simply did not work but no visible clues were available to
help diagnose, such as forgetting to connect the form ele-
ment. These errors could be as easily fixed by “fiddling” with
the HTML markup.

Figure 6 shows the most elaborate static error encountered:
nearly the entire Mortgage web page was connected incor-
rectly, and the user went through a sequence of iterative
modifications until figuring out the proper HTML nodes and
spreadsheet cells to connect. At each step in Figure 6, the ex-
istence of the error was so clear that a nearest-neighbor walk
toward correctness was possible. This participant recalled his
thought process afterward, “I tested it out and it changed to
the wrong thing so I’m like, ‘OK. That’s not right,’ ” Another
participant who made an identical error said aloud while pro-
gramming, “Alright so I put the connect in the wrong place.
It needs to be connected to the input area.”

While these categories may be useful in framing future work,
other groupings may prove more appropriate with more data,
e.g. connection, conditional, and form errors.

Overall Reactions
Overall reactions to our method were enthusiastic, as the pop-
ulation we studied appeared to be right in the middle of a de-
mographic capable of quickly learning Quilt but not capable
of building Quilt-style applications otherwise. Participants
liked the immediate feedback and many saw it as a prototyp-
ing tool because of that. One participant cited the lack of
needing to understand how to write sequential steps often re-
quired by programming as a benefit: “For somebody who is
very familiar with spreadsheets it makes sense in my head. It
doesn’t require a lot of ‘if this happens, this happens, if this
happens this doesn’t happen.’ It just naturally makes sense,”

All reported that they would use a system like this if it was
available to them. “As a beginning programmer, it feels in-
credible. I feel so much more empowered,” one said. And
another: “This is great because it lowers barrier to entry for
someone who is never going to be a developer.”

(a) Several errors exist initially: spreadsheet cells
have been connected to the web page’s labels,
rather than input elements, and the first connection
was made to an empty cell coordinate (B1)

(b) Seeing the rendered web page in the prior step,
the participant realizes he has made connections to
the wrong nodes. He copies and pastes the connect
statements to the other <TD> elements, causing the
cell values to overwrite the <INPUT> elements.

(c) The participant exclaims “Oh!” and makes a
reference to the fact that he was skimming the
HTML without taking to time to read it, then moves
the connect statements into the <INPUT> elements.

(d) When one of the input boxes fails to load a value
in (c), the participant notices the null value problem
for the first time. After re-checking the HTML
attributes, he notices and fixes the cell reference
(B1 -> B2) after re-examining the spreadsheet.

Screen Capture from Editor Window
(red boxes added)

Screen Capture from Web Browser

Figure 6: Most errors encountered could be identified and di-
agnosed by simply reloading the web page. This participant
had the longest sequences of such activity. Other errors were
harder to detect, requiring the user to experiment with differ-
ent data values or manually inspect code to diagnose.

DISCUSSION

Low level end-user programming
Our approach is quite low-level compared to related work.
Spreadsheet-backed visualizations using the Exhibit frame-
work [14], for example, are built by invoking pre-made wid-
gets from HTML tags. Quilt offers only the ability to connect
raw HTML elements to spreadsheet entities. This puts the
non-programming population in a position where they come
very close to needing to think like programmers.

Concepts like our show-if command require understand-
ing a bit about boolean logic. “show-if and hide-if
were kind of confusing. show-if, show if what? It would
make more sense if you called it ‘show if true’,” said one
user. Others made mistakes concerning the notion of point-
ers, such as typing connect="Loan Amount" instead of
connect="B2". This suggests a more flexible addressing
scheme that allows users to refence values by nearby cell
lables may be useful.

There was also a physicality to some participant’s understand-
ing of the task at hand. Three users reported becoming con-
fused when they realized they would need to connect a verti-
cally organized UI element (e.g., Todo list) on the web page
to the keyword rows, which they thought of as something
horizontal. Despite these confusions, the fact that nearly all
participants identified and corrected their bugs suggests that
the web relations approach reduces the search space of pos-
sible programming statements to a set navigable by authors

with only partial understanding of the concepts involved.

Participants did report having to adjust expectations to get
used to the idea that one relation (e.g., connect) could pro-
vide so many different behaviors (output, append, modify,
etc). One remarked, “I’m doing something totally different
but it’s the same wording,” and this ran counter to her under-
standing of programming having many commands. Another
commented “I have a sneaking suspicion this won’t work,”
while typing connect into an input element after having
just used it on a span. Ultimately, participants seemed to
like this approach after getting used to it. “I felt like there
were very few functions I needed to remember,” one said
when asked what she liked about Quilt, and another: “[I felt]
overwhelmed, but then I knew I need to figure out where I
will put my connects.” The relational approach to templating
offers the possibility that, in many cases, knowledge that two
data objects should be “connected” is sufficient, without un-
derstanding the details of how to implement this connection.

In some cases, Quilt’s compact programming language in-
duced errors because participants got so used to typing
connect they forgot other commands existed. One partici-
pant used connect for everything in Task 1, before realizing
one of the elements required a show-if. She remarked, “I
think it was just a matter of momentum. I was just connecting
everything. It just seemed like connectwould just work be-
cause everything else just worked with connect.” Another
who made the same mistake said, “I didn’t think it through. It
was just a natural reaction, because I was connecting a lot of
things.” One caught himself making this error and muttered,
“It ends up being very repetitive. I must not get cocky.”

Design Patterns
Because Spreadsheets are turing complete, the spreadsheet-
view model can support arbitrarily complex application logic
in theory. But the kinds of applications for which SV pro-
gramming is a practical approach for end users will likely
be impacted by design patterns developed to handle common
scenarios. This is an interesting and fertile ground for future
work. We provide two examples here.

Functional View Pattern
It is clear that information management applications have
data models. But they also have view models, which rep-
resent a transformation of the data model that corresponds to
what should be shown in the UI at any given time. In web
applications, the view model is often left implicit, scattered
across HTML, Javascript, and server-side state. This obfus-
cates a clear definition of view state in a way that complicate
development and debugging.

SV applications provide an attractive way to make these con-
cepts isolated, explicit, and functionally dependent by defin-
ing them as separate spreadsheets. Figure 7 shows this pat-
tern, which is similar to the organization we used in the wed-
ding planning app in Figure 2. Using inter-document formu-
las, the view model sheet is defined as a set of spreadsheet for-
mulas that compute upon the data model sheet. These com-
putations are parameterized by data in the parameters sheet.

Data Model Sheet

View Params Sheet
View Model

Sheet
HTML
Page

Figure 7: The Functional View Pattern, in which data for the
HTML view is stored in a view model sheet. This sheet is a
function of a data model sheet and view parameter sheet.

In this pattern, the HTML page displays data from the view
model, but it writes data back into the data model and view
parameter sheets. Google Spreadsheets natively causes these
writes to propagate to changes in the view model, and Quilt
causes changes in the view model to propagate forward into
the web page. Quilt’s spreadsheet addressing language is
easily extended to specify which sheet, among many linked
sheets on a page, is being referenced.

Quilt’s current implementation supports this pattern, but ex-
porting all view logic to a spreadsheet introduces UI latency.
This is a problem of system implementation though, not one
of end-user programming model design: related work [7] has
shown it is possible to automatically rewrite portions a web
app’s data and computation and relocate it in the web browser
for performance gain. The spreadsheet could thus serve as a
useful authoring and debugging environment even if it is not
the execution platform.

Introducing Multiple Users
Quilt supports multiple simultaneous users with a modifica-
tion to the functional view pattern shown in Figure ??. In this
pattern, spreadsheets can be designated as either shared or
private in the link element that identifies them in the web
page’s head. When a new user visits the web app, Quilt
makes fresh duplicates of any sheets marked as private, cre-
ating a sandboxed data store for that user that can remain per-
sistent through multiple visits. The private sheet may include
both view parameters and user data, and the shared data sheet
may aggregate values from many separate private user sheets.
This pattern enables users to store private. It also avoids a
problem in which simultaneous users might overwrite each
other’s view parameters (if they were sharing a global view
parameter sheet).

View Params Sheet

View Model
Sheet

HTML
PageShared Data Sheet

Private User Sheet

Figure 8: Modification of the Functional View Pattern to sup-
port multiple simultaneous users and private data.

UI Possibilities
Visual Programming
Many WYSIWYG environments for HTML authoring al-
ready exist, and spreadsheets themselves are a visual pro-
gramming environment. By grounding Quilt in an HTML-
based syntax and existing spreadsheet software, rather than
creating a custom HTML+spreadsheet WYSIWYG applica-
tion, we ensure that this method works independently of any
WYSIWYG tools that may be layered on top. From an au-
thoring UI perspective, Quilt only introduces the new step of

crafting declarative relations between HTML elements and
spreadsheet elements. Quilt could thus easily be made a vi-
sual programming environment by making this relation craft-
ing step visual.

Such an environment might present the author with a split-
screen view of their spreadsheet and their HTML UI. The au-
thor would then visually drag and drop spreadsheet entities
(cells, rows, columns) onto the web page (or vice versa) to
draw relations. After drawing a relation, the user selects what
kind it is (connect, delete, show-if, or hide-if).
Because web relations annotate ordinary web pages, this vi-
sual development environment could enable the user to inter-
act with and debug the live page while editing it.

Web Worksheets embedded in Spreadsheets
Quilt demonstrates the potential of offering more flexibly
designed spreadsheet UIs inside the spreadsheet application
itself. Large spreadsheets with many worksheets for data
and computation could include “web worksheets” written as
HTML to provide a better user interface to the analyses than
a tabular view provides. Applications built this way could
contain rich UIs while relying upon a well-understood infras-
tructure that additionally permits users to view and edit the
data and computation layers.

• (X + Y)Z is 20

X: Y:

f x =(B2 + B3) * input#z

B2 B3 Z:15 5 1.0

Figure 9: Mockup of what spreadsheet-style editing directly
in a web page might look like, enabling spreadsheet elements
(B2 and B3) to be mixed with HTML elements (input#z).

These packaged web worksheets could even be editable in
spreadsheet fashion, like the mockup in Figure 9. A user
could select a web element, revealing a formula entry wid-
get to bind the web element to a formula result. A user might
even mix spreadsheet cell addresses with CSS selector ad-
dresses. The total amount for a restaurant bill might be the
sum of column B, plus the Tip entered in a web input box,
for example: =sum(B:B, input#tip). A basic exam-
ple would be re-implementing the spreadsheet UI as a table
element, with each table cell representing a spreadsheet cell.

Future Work
In addition to performance and design pattern questions
raised by our implementation, there are many intriguing ques-
tions to explore surrounding spreadsheet-view applications
more generally. Understanding what class of applications can
practically be authored using this approach, and the kind of
user scaffolding required to create nontrivial applications is
a key next step. Quilt’s choice to use HTML and Spread-
sheet software as-is enables it to work together with the many
tools that already exist to support authoring in each respective
medium. But there are also many benefits to be explored by
taking a joint approach: modifying the spreadsheet software
to embed awareness of the connected web page and explicit
UI support for SV application authoring. Chang’s work with
Gneiss, done in pallel to our work on Quilt, explores this ap-
proach [9].

RELATED WORK
End User Web Programming. Building interactive web ap-
plications currently requires users to have some knowledge of
programming. For the HTML author, this often means learn-
ing not only programming fundamentals but multiple new
computer languages as well, considering most fully-featured
web applications today combine five or more languages [23].
System-level design is also required to coordinate front-end
and back-end systems, along with a data storage system such
as a database. Research has found that novices struggle with
these coordination and integration tasks [17] [16] [23].

The effects of this challenging environment can be seen in
the difference between what is valued versus what gets built.
Surveys of informal and professional web developers found
there were considerable gaps between what web app features
were deemed valuable and what got developed, and these
gaps were wider for non-programmers [24]. Some of these
features include login-based access, databases, online forms
and surveys, member registration, and content management.

Mashup-based tools help end users create web applications
that integrate data from multiple sources. These tools often
require little or no programming, instead using direct manip-
ulation [19] [4], graphical dialog boxes [29], or code sam-
ples [13]. Unlike Quilt, these applications only extract data
from existing sources and have no interface for storing or
managing the user’s own data, unless the user can set up their
own database. Other tools assist end users with modification
and customization of their web experiences [8] [20] [2], but
many of these require programming knowledge and also only
have the ability to alter existing web pages.

More recently, industry frameworks such as Meteor [3] and
Firebase [1] have pushed large parts of a web application
into the browser. But both require heavy use of Javascript
and learning a reactive data synchronization API. Firebase re-
moves the need to write a back end but provides no support
for computation and little support for editing raw data. Quilt
also offers reactive data updates but requires no Javascript and
leverages a spreadsheet for data editing and computation.

Web design tools for HTML and CSS do not offer support for
bridging HTML documents with back-end databases, largely
because there are no drop-in frameworks for animating a de-
sign. Indeed, a survey of professional web designers found an
overwhelming desire for tools that can easily prototype data-
driven interactions and provide database integration, even
amongst users that knew a moderate to advanced level of pro-
gramming [21]. In nearly all cases, designers found program-
ming more difficult and time-consuming than web design.

Spreadsheets as End User Information Management
Tools. Studies have shown that spreadsheets are an easily
available and familiar information management tool for end
users, but they present difficulties when scaling to many col-
laborators and across different physical locations [28]. Few
end users convert their spreadsheets to more scalable enter-
prise database systems, though, because they are notoriously
difficult to set up, modify, and query [15].

Much work has been directed at reducing the spreadsheet

errors that occur at larger scale. The Topes project helps
end users define and perform data manipulation and valida-
tion tasks [25], and other recent work enables data cleaning
by example [12]. Online services like Google Spreadsheets
scale spreadsheets to many concurrent users, with operational
transforms and UI indicators to support simultaneous edits.
But because the spreadsheet UI is optimized for numeric cal-
culations, text-heavy data editing remains a usability chal-
lenge for spreadsheets. Our method addresses this challenge
by allowing spreadsheet data to be cast into HTML interfaces.

Spreadsheet-backed Visualizations. Several efforts have
enabled better visualization of spreadsheet data outside the
spreadsheet interface. Microsoft Excel has long supported
APIs for interacting with spreadsheet data, and recent web-
based spreadsheets such as Google Spreadsheets offer web-
equivalent APIs as well. A focus of prior work in this area has
been to develop ways to package and reuse widgets that make
use of this data. The WebCharts [10] project and Google’s
Charting Widget API both provide a Javascript interface for
authoring reusable visualization widgets that draw data from
a spreadsheet. But these efforts require the user to learn
Javascript and are read-only in nature—the goal is essen-
tially to embed live charts rather than provide an alternate
spreadsheet interface. Google Forms creates web-embedable
information capture widgets, but they offer limited visual cus-
tomization and can only append rows to a spreadsheet.

The FORWARD [18] project and Exhibit [14] offer web
libraries of data visualization widgets. FORWARD wid-
gets are read-write, but require learning a custom declara-
tive programming language, writing SQL queries embedded
in HTML, and using a full database. Exhibit widgets work
with spreadsheets and can be invoked with a simple extension
to HTML, but they are read-only. In both cases, the systems
constrain users to building only those interfaces that can be
constructed by snapping together the widgets provided.

Quilt’s approach is read-write and widget-agnostic. Rather
than provide a way to embed visualizations like charts and
maps, Quilt targets the case in which a user seeks a better—or
custom—interface to view, edit, and collect spreadsheet data.
Because Quilt, like Exhibit, uses a small extension to HTML
to provide these interfaces, Quilt apps inherit many attractive
sharing and publishing qualities that web publishing provides.

CONCLUSION
This paper presents Quilt, a system that helps end users con-
nect HTML pages to spreadsheets. Quilt authors learn only
four new HTML attributes which mark ways in which HTML
nodes are related to spreadsheet concepts. Quilt uses these
“web relations” to turn an HTML UI mockup into a reactive
data-backed user interface. Quilt enables a variety of sim-
ple information-management applications, with more com-
plex ones requiring more complex spreadsheet design. Our
user studies showed that HTML-savvy end users can quickly
learn to use Quilt to connect HTML pages to spreadsheets
and to design spreadsheets to support these pages.

REFERENCES
1. Firebase. https://www.firebase.com, 2014.
2. Greasemonkey. http://greasemonkey.mozdev.org, 2014.

3. Meteor. https://www.meteor.com, 2014.

4. Yahoo! pipes. http://pipes.yahoo.com, 2014.

5. Benson, E., and Karger, D. R. Cascading Treesheets and Recombinant
HTML: Better Encapsulation and Retargeting of Web Content. In
WWW ’13 (2013).

6. Benson, E., and Karger, D. R. End-Users Publishing Structured
Information on the Web: An Observational Study of What, Why, and
How. In CHI (2014).

7. Benson, E., Marcus, A., Karger, D., and Madden, S. Sync kit: a
persistent client-side database caching toolkit for data intensive
websites.

8. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C.
Automation and customization of rendered web pages. In UIST ’05
(2005).

9. Chang, K. S.-P., and Myers, B. A. Creating Interactive Web Data
Applications with Spreadsheets. In UIST (2014).

10. Fisher, D., Drucker, S. M., Fernandez, R., and Ruble, S. Visualizations
everywhere: A multiplatform infrastructure for linked visualizations. In
IEEE Trans Vis and Comp Graphics (2010).

11. Force, C. S. T. A. T. Csta k-12 computer science standards. ACM
(2011).

12. Gulwani, S., Harris, W. R., and Singh, R. Spreadsheet data
manipulation using examples. Commun. ACM 55, 8 (Aug. 2012).

13. Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R. Programming
by a sample: Rapidly creating web applications with d.mix. In UIST
’07 (2007).

14. Huynh, D. F., Karger, D. R., and Miller, R. C. Exhibit: Lightweight
structured data publishing. In WWW ’07 (2007).

15. Jagadish, H. V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y.,
Nandi, A., and Yu, C. Making database systems usable. In SIGMOD
’07 (2007).

16. Ko, A. J., and Myers, B. A. Human factors affecting dependability in
end-user programming. SIGSOFT Softw. Eng. Notes 30, 4 (May 2005).

17. Ko, A. J., Myers, B. A., and Aung, H. H. Six learning barriers in
end-user programming systems. In VLHCC ’04 (2004).

18. Kowalczykowski, K., Ong, K. W., Zhao, K. K., Deutsch, A.,
Papakonstantinou, Y., and Petropoulos, M. Do-it-yourself custom
forms-driven workflow applications. In CIDR ’09 (2009).

19. Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T. A. End-user
programming of mashups with vegemite. In IUI ’09 (2009).

20. Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., and Kandogan,
E. Koala: Capture, share, automate, personalize business processes on
the web. In CHI ’07 (2007).

21. Myers, B., Park, S. Y., Nakano, Y., and Mueller, G. How designers
design and program interactive behaviors. In VLHCC ’08 (2008).

22. Rode, J., Bhardwaj, Y., Pérez-Quiñones, M. A., Rosson, M. B., and
Howarth, J. As easy as click: End-user web engineering. In Web
Engineering. Springer, 2005, 478–488.

23. Rode, J., Rosson, M., and Pérez-Quiñones, M. The challenges of web
engineering and requirements for better tool support. In Virginia Tech
Computer Science Tech Report TR-05-01 (2005).

24. Rosson, M. B., Ballin, J., and Rode, J. Who, what, and how: a survey of
informal and professional web developers. In VLHCC ’05 (2005).

25. Scaffidi, C., Myers, B., and Shaw, M. Topes: Reusable abstractions for
validating data. In ICSE ’08 (2008).

26. Scaffidi, C., Shaw, M., and Myers, B. Estimating the numbers of end
users and end user programmers. In VLHCC ’05 (2005).

27. Valderas, P., Pelechano, V., and Pastor, O. Towards an end-user
development approach for web engineering methods. In Advanced
Information Systems Engineering, vol. 4001. 2006.

28. Voida, A., Harmon, E., and Al-Ani, B. Homebrew databases:
Complexities of everyday information management in nonprofit
organizations. In CHI ’11 (2011).

29. Wong, J., and Hong, J. I. Making mashups with marmite: Towards
end-user programming for the web. In CHI ’07 (2007).

https://www.firebase.com
http://greasemonkey.mozdev.org
https://www.meteor.com
http://pipes.yahoo.com

	Introduction
	Quilt
	Method
	Web Relations
	Spreadsheets as ``Models with Benefits''

	System Architecture
	Evaluation
	Participants
	Teaching Session
	Tasks

	Result: Learning and Applying Quilt
	Designing Spreadsheets to Back Web Apps
	Debugging Behavior
	Overall Reactions

	Discussion
	Low level end-user programming
	Design Patterns
	Functional View Pattern
	Introducing Multiple Users

	UI Possibilities
	Visual Programming

	Future Work

	Related Work
	Conclusion
	REFERENCES

