
End-Users Publishing Structured Information on the Web:
An Observational Study of What, Why, and How

Edward Benson
MIT CSAIL

32 Vassar St., Cambridge, Massachusetts
eob@csail.mit.edu

David R. Karger
MIT CSAIL

32 Vassar St., Cambridge, Massachusetts
karger@mit.edu

ABSTRACT
End-users are accustomed to filtering and browsing styled
collections of data on professional web sites, but they have
few ways to create and publish such information architectures
for themselves. This paper presents a full-lifecycle analysis
of the Exhibit framework—an end-user tool which provides
such functionality—to understand the needs, capabilities, and
practices of this class of users. We include interviews, as
well as analysis of over 1,800 visualizations and 200,000 web
interactions with these visualizations. Our analysis reveals
important findings about this user population which general-
ize to the task of providing better end-user structured content
publication tools.

Author Keywords
Web design; Web content editing; Information architectures;
Faceted browsing

ACM Classification Keywords
H.5.4. Information Interfaces and Presentation: Hypertex-
t/Hypermedia - User Issues

INTRODUCTION
Structured data access and navigation is pervasive on the web.
Whenever we visit Epicurious.com to find a recipe, browse
Amazon to make a purchase, or visit Facebook to look at
photos, we are presented with a collection of objects (recipes,
products, photos) that are uniformly rendered based on their
structure. We can sort these items based on various proper-
ties, filter them using faceted browsing, and often visualize
them using different templates offered. The structure of this
data makes it easier for us to understand it and find what we
seek.

At present, the tools for creating such structure-based web
pages remain directed almost entirely at highly trained
database engineers and web developers who use SQL
databases, custom code, and powerful templating engines.
Ordinarily-skilled authors are largely relegated to posting un-
structured text on blogs and wikis, or to giving their data to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2473-1/14/04..$15.00.
http://dx.doi.org/10.1145/2556288/2557036

companies like Epicurious and Facebook which provide rich
browsing interfaces as long as you fit their schema.

During the “Web 2.0” era, a flurry of research anticipated
the idea that, given better tools for structured data, end-users
would become prolific data publishers, just as they were pro-
lific hypertext publishers on the early web. But many of
the technologies that resulted—like microformats, semantic
wikis [23], and RDFa [12]—were not widely adopted into
the standard end-user toolset. Given the power and value
that structured data sites provide professional developers, it is
natural to ask why they have not been adopted by end-users.
Was the anticipation of data publishing premature or even in-
correct? Do these authors lack the technical skills—or the
need—for such publication methods?

This paper studies the use of a web-based data publishing
framework called Exhibit, which offers a balance between
novice accessibility and power-user extensibility. Introduced
in 2008, Exhibit allows anyone to publish an interactive struc-
tured data visualization by posting a spreadsheet (describing
the data) and a single HTML document (describing the pre-
sentation and interaction) to any web site. Exhibit extends
HTML with tags such as <map>, <list>, <facet>, and
<template> that turn into interactive data elements. Over
1,800 Exhibit have been created in the wild.

Our study examines Exhibit using a mixed-method approach
at four levels of detail. We interview 12 authors of some
of the most popular exhibits. We analyze statistics about
the design choices and data used by the full set of 1,800
Exhibits in use in the wild. We take the 100 most used
Exhibits according to access logs and further examine and
taxonomize them. Finally, we assess logged activity of
200,000 web-interactions by Exhibit site visitors. We also
provide our dataset and a design gallery of the Exhibits at
csail.mit.edu/haystack/exhibit-study.

We conducted this study with three goals in mind. First, we
validate that there is a community of authors who seek to
publish interactive data visualizations and whose needs are
not met by the tools available to them. Our interviews ex-
plore what these needs are. Second, we seek to understand
whether Exhibit’s authoring model, which we call the star
model for reasons explained in the following section, meets
the needs of this community. The star model is a constrained
way of exposing and integrating components from data vi-
sualization and navigation frameworks. Prior work hypoth-
esized that this programming model supports the needs of a

wide spectrum of expertise levels in a manner that facilitates
code reuse and rapid construction [14]. Studying real-world
use of this model provides design guidelines that can be ap-
plied to other visualization frameworks. Finally, we seek to
synthesize the habits of this community of long tail data pub-
lishers and understand how their creations are published and
received by web viewers.

We organize our findings by method, which can present a
challenge in tying together takeaways which gather support
across methods, so we highlight primary ones here and return
for a summary at the end of the paper:

• The star model appears to be meeting the needs of a variety
of use-cases, from simple to complex, and has provided a
platform for many to learn to program along the way.

• Authoring non-tabular data (e.g., multi-valued tables and
graphs) is the norm, but authors are “abusing” tabular ed-
itors (like spreadsheets) to do so. These authors have no
problems with complex data models, but struggle with the
text syntaxes we ask them to use to describe these models.

• Authors will choose unnecessarily complex and labor in-
tensive solutions over equivalent simple ones if the copy-
able design examples address the complicated case.

• Authors are often dependent on, but “boxed in” and limited
by, Content Management Systems, and need ways to take
control over the entire web page and the structure of the
data managed.

• Authors who think their readers want data interaction are
right: the data browsing features authors create get used,
and the kind of browsing widgets offered impacts the way
readers browse.

RELATED WORK
This work aims to make contributions in the vein of other
studies about the creation and management of web content.
Voida’s work with “homebrew databases” identified key chal-
lenges for small organizations tasked with managing their
own data [22]. Landay’s study of design workflow provides
an understanding of how web interfaces are created from
scratch [20]. Klemmer and others provide additional informa-
tion about the practice of borrowing and tweaking the designs
of others [11, 19, 13]. Our work has parallels to all three: we
seek to describe the common practices of authors who create
“homebrew” data-backed web pages and identify their needs
so that toolbuilders can better serve this community1.

In-field evaluation of data visualization toolkits has been rel-
atively sparse. Neither Exhibit nor more numerically-focused
libraries such as Protovis [4, 6] and D3 [5] have been the sub-
ject of follow-up studies which track their usage patterns in
the community. Protovis, for example, instead applies a Cog-
nitive Dimensions of Notation analysis and provides reactions
to the framework [4, 6], and D3 [5] focuses on performance
and developer reactions. This paper provides important in-
sights about how such tools are actually used in the wild, and
by end-users rather than programmers.

Exhibit and the Star Model
1We consider this a separate group than professional-focused infor-
mation management tools like Greenstone and Kepler [25, 1]

Exhibit is a Javascript web framework that enables end-users
to author (not program) faceted interactive visualizations like
the ones shown in Figure 1, just as they author HTML doc-
uments. While number-centric visualizations, such as scat-
ter plots, are possible, the framework is heavily targeted at
browsing collections of structured items. Authors create vi-
sualizations (called “Exhibits”) by writing a simple HTML-
based configuration and then linking to data the same way
they would link to a CSS file. Many data types are supported:
CSV, JSON, MS Excel, BibTeX, and the Google Spread-
sheets API.

Exhibit implements an interaction design that we call the star
model and seek to validate as a useful pattern for enabling
end-user data display creation. In this model, a global collec-
tion of data items serves as the center of the star, and declara-
tively specified UI widgets exist as the spokes—the points of
the star—that either display, filter, or modify this collection.
These widgets are connected only implicitly to the global col-
lection at the center, and they are otherwise completely inde-
pendent of each other. Unlike D3 or Storytelling Alice [17,
10] everything is specified declaratively, though authors can
create their own plugins easily. And unlike D3, Alice, and Ya-
hoo Pipes! [15], there is no notion of dataflow, significantly
simplifying construction, copying, and pasting, and reuse.
This also means this model lacks the power that raw SQL
queries or programming languages afford, but our interviews
and usage analysis show this extra power is not necessary for
many users. The independence between spokes and implied
connection to the data in the center further simplifies identi-
fying and copying individual fragments of a visualization as
well.

The star model results in visualization configurations that can
easily be scraped and analyzed programmaticaly, unlike pro-
cedural frameworks. An Exhibit configuration has three main
components that we analyze. The first is one or more views—
maps, timelines, tables, lists, or scatter plots—that can be
shown modally or stacked together. The second is zero or
more facets and text search widgets. Facets are UI widgets
that display the range of some field of data, providing an
affordance for viewers to filter that data to only a subset of
that range. For example, in a course catalog, a viewer might
choose to view only courses from the Computer Science de-
partment. Finally, the Exhibit configuration contains lenses,
small HTML templates that describe styling for items in the
dataset.

The star model is not an alternative to frameworks like D3,
but a set of constraints that result in a component packag-
ing system that can be layered on top of such systems. With
this packaging system, authors do not worry about data flow
or widget implementation; they simply say “put this widget
here, with these options.” We hypothesize that this model
strikes a balance between simplicity and power that satisfies
the needs of a wide range of authors, and thus deserves wider
consideration. We validate this hypothesis in our author in-
terviews.

Figure 1: Nine example Exhibits from our dataset and the
resulting design gallery.

DATASET
We curated three data sets for the use in this paper:

VIZ1800 Dataset. We generated a list of 1,897 Exhibits
by examining the Apache server logs on the machine that
hosts the Exhibit Javascript library. This dataset contains the
complete set of assets used to create each visualization: the
dataset, the HTML page surrounding the visualization, and
the visualization configuration (views, facets, and lenses).

TOP100 Dataset. For analyses in the paper that required
human coding, we used the subset of the data corresponding
to the top 100 most visited exhibits according the Apache logs
for a period of months in 2012. Our interview subjects were
among the authors of Exhibits in this dataset.

USAGE Dataset. Several Exhibit authors we contacted
agreed to use a special version of Exhibit with anonymous
analytic hooks that recorded usage events such as facet oper-
ations, text searches, and view selection (e.g., switching from
a Map to a Timeline). In total, we collected 266,747 dis-
tinct user events for 32,978 distinct IP addresses (hashed for
anonymity) across 57 distinct Exhibits.

AUTHORS
We interviewed twelve authors to better understand how and
why people use Exhibit. The interviewees responded to a re-
quest for participation sent out to the authors of the TOP100
dataset. They ranged from school administrators and teach-
ers to business owners and urban planners. Interviews were
semi-structured, consisting of a standard set of prompts about
visualization creation and maintenance, with follow-up ques-
tions based on the answers received. Though this study is
centered upon Exhibit, we attempt to make constructive ob-
servations that generalize to other tools.

Skills and Expertise
None of the authors we interviewed were formally trained or
employed in web development. Author 1’s description is rep-

resentative of the group at large: “I’m fairly comfortable with
HTML. I’ve been doing HTML stuff for a long time. CSS
is doable, but I don’t feel as comfortable. I don’t do too
many fancy things, I guess.” Subtle misuse of words from the
technical perspective (such as describing HTML editing as
“adding brackets”) was common in over half the participants,
indicating that most of this population is self taught.

Five of the participants had prior experience with data vi-
sualization. Two used tools such as Tableau regularly, two
were very familiar with cartography, and one runs a con-
sumer product website. Three-fourths also had prior experi-
ence editing HTML. Three self-described themselves as hav-
ing become advocates of structured data publishing, and de-
scribed transitioning into local “gardeners,” to apply Gantt
and Nardi’s Gardeners and Gurus metaphor [9]. In addition
to creating visualizations themselves, they educated and pro-
vided support to their respective communities.

Intent
Four common themes were present when authors were asked
why they chose to use Exhibit to visualize their data:

(1) Data navigation. Eight of the interviewees mentioned
wanting some way to let people navigate through the infor-
mation they were publishing. For some, it was the primary
reason they said they chose the framework. As an exam-
ple, Author 3 saw the ability to dynamically filter and ex-
plore datasets as a competitive business advantage, both for
customer-facing pages and his employees’ own internal use.
Author 11 and Author 9 both created their visualizations as
a way to help themselves and coworkers interactively filter
through sizable library catalogues that they managed for their
departments.

(2) High-level data understanding. All of the authors who
used maps or timelines, and some who did not, mentioned
wanting to provide an understanding of their data in a differ-
ent light than only text allowed. “I wanted to draw students’
attention to different categories of information,” Author 10,
a professor, describes, “so having a marriage of these two
visualizations [a map and a timeline] seemed very appeal-
ing to me.” Author 2, also an educator, created curations of
prior work for new projects. At first, “there were other people
working on the project that said, ‘Ah, this is great,’ because
they could have a quick look at all the different papers.” Later,
he discovered that the information displayed on facets them-
selves were a useful indicator of aggregate trends in his data
(e.g., publications over time, or by school), not just a way to
filter information.

(3) A programming-free way to publish data. Some in-
terviewees were not thinking of themselves as data publish-
ers, but rather just looking for a way to create a web page
with information from some other source. Author 7 wanted
to put an Excel spreadsheet of employee information into an
HTML table. She had copied the Exhibit configuration from
another department’s web page and simply changed the data
link. Unknowing that Exhibit provides faceted browsing and
text search, she showed off the new employee-page they had
recently paid a PHP developer to create that added facets to

the employee directory, commenting that she wished “Exhibit
was capable of doing all this stuff [faceted browsing]” so that
they wouldn’t have needed a custom system.

(4) Frustration with traditional web development. Tech
savvy interviewees also commented about their desire for
respite from the complexity of web development. Author 3’s
company had gone through a custom PHP-based product cat-
alogue (“that was particularly clumsy”), storefront manage-
ment software (“didn’t work so well”), and Google’s enter-
prise search solutions (“didn’t really work well either”), be-
fore choosing Exhibit because it provide a product catalogue
with “fast, cross-referencable information” without any need
to set up multiple web pages or maintain complex software.

These motivations affirm the initial needs Exhibit sought to
target: navigating and visualizing sets of data without re-
quiring programming. They also provide evidence that Ex-
hibit’s “star model” of programming provides a “pay-as-you-
go” complexity that meets the needs of both novices (point
3 above) and experts (point 4). These users replaced, rather
than complimented, their traditional techniques — exporting
to HTML for (3), and SaaS/bespoken systems for (4).

Data Creation
All of the authors we spoke to authored data in a GUI-based
tool, such as FileMaker Pro, Excel, or Google Spreadsheets.
Even though Exhibit supports Excel as a data source, Excel-
based authors reported converting their data to JSON for pub-
lication. After this initial export, some would later update the
data in JSON format rather than its source format.

While a few authors described switching to JSON as an au-
thoring format as they became more familiar with it, the ma-
jority had negative opinions about JSON’s usability, citing
it as one of the larger challenges of the visualization pro-
cess. “I taught a course where we built [Exhibits] from JSON
files, instead of Google Spreadsheets...and students unfamil-
iar with programming just found it too tedious and too dif-
ficult to chase after every missed comma and every unequal
bracket...it defeated too many of them...quite a few just sort
of threw up their hands in defeat,” says Author 10. Author 3
has similar experience: “With JSON one of my concerns is
not the coding but the missing brackets, and I’ve since found
applications that help me find when I’ve got a missing bracket
or an extra comma or something, but that gets to be an issue.”
As does Author 1: “that was the part that was less intuitive to
me, setting up the JSON file.”

These conversations suggest that the problem is one of syntax
and tooling, not understanding. These authors (and their stu-
dents) are capable of organizing and thinking about structured
data, but not skilled in the practice and tools of structured
text editing that programmers take for granted. Editors that
support syntax highlighting and bracket matching are largely
unknown outside the technical community.

Trial and Error Editing
Despite the lack of formal training, these authors were able
to accomplish an impressive array of visualizations, using
HTML and sometimes CSS and Javascript. The majority

referenced a trial-and-error development style in which they
would iteratively experiment with modifications to their code
and check the results, often without firm knowledge of how
to accomplish their goal.

During one interview, an author whose HTML skills were
among the most basic of the group opened the Chrome de-
bugging console to demonstrate experimenting with different
CSS styles. Quick feedback is a good substitute for a priori
knowledge, as this author had discovered. And a common re-
quest by interviewees was to be able to edit visualizations in
the browser and save them somehow, as a way to shorten this
feedback loop. This theme has broader implications for web
development, suggesting benefits to making the web browser
capable of replacing a separate program for editing and sav-
ing web documents.

Copy, Paste, and Tweak Workflow
Armed with a basic knowledge of web syntax and seman-
tics, but a lack of formal knowledge, examples from which to
draw become incredibly important. Nearly all of the authors
reported creating visualizations by coping and then modify-
ing an existing visualization. This is concordant with previ-
ous findings about the both the practice and utility of copying
and modifying code and design examples to create new arti-
facts [19, 11, 13].

Author 8, a repeat user of Exhibit, describes his process as
“basically taking an existing file, reusing that, editing it as
need be, and then also...unless it’s a real time crunch, I’m
trying to learn more...add more features or add more com-
ponents whether that’s improved design on the CSS side or
trying to do more with the data file.” Author 3 describes his
creation experience: “I remember back. I was on that wiki
a lot...The reason that the exhibits ended up being something
I was able to use was that there were some examples, and
God I just wished there were more. It was one of the things I
remember very clearly, going through and seeing how every-
body did things. Examples were invaluable.” Author 7’s visu-
alizations were copied and pasted from another department’s
website within her company without any modification: only
the data link was changed.

After hearing what an important role design examples played
in the authoring process, we decided to repurpose our visu-
alization dataset as a design gallery. Users of the gallery can
browse through Exhibits found on the web based on what fea-
tures of the framework they use (we can programatically ex-
tract this). The screenshots in Figure 1 were selected from the
visualizations curated in this gallery2.

Publication
The struggle to integrate non-text forms of expression
into Content Management Systems (CMSs) was a common
theme. Author 1, whose office mandates that all web content
be published through a CMS, reported that after she created
the Exhibit as HTML, “I wasn’t able to publish the Exhibit
myself. I had to go to the technology people and ask them put

2Available at simile-widgets.org/exhibit/gallery

simile-widgets.org/exhibit/gallery

it up.” Author 7 remarks about posting a new web page on-
line, “I had to get help from a PHP developer. I’m not a PHP
developer...to get help from an expert who knows PHP was a
big plus.” Author 10 states, “I have a love hate relationship
with Content Management Systems...[they] very often have
overhead that I don’t want to mess with.”

The crux of this problem seems to be that CMSs provide au-
thors a very narrow canvas on which to draw: a contiguous
rectangular region in the middle of the web page, with no easy
access to side gutters or the HEAD element. Side gutters are
important for design reasons—they are the canonical place
for navigation—but the CMS generally does not permit page
authors to modify them. And access to the HEAD element
is sometimes necessary to include CSS and Javascript. Ac-
cessing either of these requires that the user become not only
a system administrator, but also a programmer, editing low-
level theme files. And authors who did this often made mis-
takes: our scrape of the web revealed several sites in which
a theme file had been mis-configured to include Exhibit’s
Javascript and CSS on every page, regardless of whether there
was a visualization.

Despite the challenges of using external Javascript frame-
works alongside a CMS, Author 5, who worked for a newspa-
per, believes that this is a better way to extend CMS function-
ality than native CMS plugins. “Media organizations can’t
work with something new unless that something was explic-
itly designed to work with [the CMS] they already have.
There is an obvious workaround that every single modern
CMS will allow you to embed custom Javascript into the pub-
lished page.” Javascript libraries, from his perspective, are the
one truly platform independent way to extend web publishing
systems. To avoid the problems we observed in our inter-
views, Javascript library authors should ensure their libraries
can be included from within the authoring view of a CMS.

THE DATA AUTHORS PUBLISH
This section looks at what kinds of data people visualize and
how they create and publish that data to the web. We use
both the TOP100 and the VIZ1800 dataset to understand the
domain, scale, model, and format of data authored by the Ex-
hibit community. Taken together with the interviews, the two
chief conclusions supported by this section are: (1) authors
understand complex data models, but are stymied by lack of
support for them in mainstream editors (like spreadsheets),
and (2) authors sers will choose unnecessarily complex and
labor intensive data solutions over equivalent simple ones if
the copyable design examples address the complicated case.

The scale and topic of hand-crafted visualizations
Put in spreadsheet terms, the average visualization created
with Exhibit is 14 columns wide and 142 rows tall (with me-
dians 12 and 67, respectively). The distribution of sizes is
shown in Figure 2. The two are shown as a pair of histograms
instead of a scatter plot because there is little correlation be-
tween schema size and item count (r = 0.16).

We visited each site in our TOP100 dataset and performed
three rounds of open coding to characterize the topic about

0

50

100

0 20 40 60 80
Number of Properties (schema size)

Co
un

t

4

250 500 750 10000
0

100

200

Co
un

t

(b)

Number of Items

(a)

μM

μM

Figure 2: (a) The average dataset used with Exhibit has
a schema of 14 properties (median 12). This figure and
calculation omits two outliers with more than 200 proper-
ties. (b) The average Exhibit has 142 distinct items (median
67). This graph and calculation is performed after clipping
datasets greater than 1000, which hand-sampling shows are
more likely to be generated by a dynamic database query.

which the data was created. This process resulted in the two-
level breakdown of topics shown in Figure 3. As seen in the
diagram, nearly half of the visualization in this dataset were
devoted to the topic we called Information Resources, which
consisted of abstract facts about the world (such a faceted list
of chemical compounds) as well as references to other pieces
of information (such as a list of research publications).

Interestingly, only ten of the twenty-three visualizations in
the Events cluster made use of Exhibit’s timeline visualiza-
tion, despite “Events” being inherently temporal in nature.
The other thirteen used only faceted text-based tables and
lists could have easily been created with plain HTML except
for the faceted data navigation. This supports the common
refrain in interviews and prior work [16] that data naviga-
tion—rather than visualization—is more important for some
authors. HTML alone does not suffice this need, as it pro-
vides only the ability to create tables and lists, but not to sort,
facet, or filter them.

(Ab)using Spreadsheets to author non-Tabular Data
A data model is an abstract set of rules that dictates how data
can be structured. A spreadsheet, for example, uses a tabular
model which represents a list of items (rows), each with the
same set of scalar properties (columns). Multi-valued tables
are like tables, but allow table cells to contain multiple values
(e.g., a list of countries). And a graph represents a collec-
tion of nodes with relationships drawn between them. These
abstract models have different breadths of expressiveness:

Tables ⊂ M-V Tables ⊂ Acyc. Graphs ⊂ Cyclic Graphs

Tools (and specialized languages) for authoring data are typi-
cally targeted at a particular type of abstract data model, such

27 People

42 Information
resources

Events23

5 Objects

3 Places

4 Historical Figures
18 Group Members

2 Other
2 Groups

7 Historical
7 Classes
5 Other
4 Entertainment

18 Research Papers

8 Facts
(e.g., Chemistry, Municiple)

4 Library Resources

3 Commentary (e.g., Blog)

2 Projects

3 Reference Materials

2 Datasets

3 Other

2 Products
3 Maps, Books

1 Locales
2 Brick and Mortar

Figure 3: Item types visualized in the hundred most popu-
lar Exhibits in our dataset. Types were and sub-types were
refined using a three-round open coding process.

as spreadsheets (and CSV) for tabular data. But it is often
possible to author data of any model using any tool as long
as the writer and reader agree upon the rules to marshal and
de-marshal it. Someone might author a multi-valued table in-
side a spreadsheet by placing comma-separated lists of items
inside cells, for example, or they may author graphical data
by agreeing upon the columns SUBJECT, PREDICATE, and
OBJECT to record the graph.

We programatically analyzed each dataset in the VIZ1800
collection to determine what what underlying data model it
used. To our surprise, less than half (41%) of the data sets
were strictly tabular. 32% were multi-valued tables, 21%
were acyclic graphs, and 6% were cyclic graphs.

Spreadsheets are the overwhelmingly predominant data au-
thoring tool for end-users, and Exhibit authors are no differ-
ent: all but one interviewee reported having authored their
data in a spreadsheet application. Assuming the population
of the VIZ1800 dataset continues this trend, this breakdown
of data model is alarming: most people author non-tabular
data, but they are stuck using table-centric tools to do so.

While Exhibit provides workarounds for encoding nontabu-
lar data inside a tabular model (semicolon-separated lists for
multi-valued tables and reference-able node IDs for graphs),
spreadsheet UIs are not designed to provide any particular
assistance for this kind of data. Spreadsheets do not allow
authors to navigate or process lists encoded as semicolon-
separated strings, for instance, and they force them into nar-
row cell layouts designed for numbers. Figure 4 shows that
mismatches like this create enough friction to drive some
graphical data authors to text formats (JSON) instead. A
chi-squared test shows the distribution of publishing medium
(JSON, RDF, or Google Spreadsheets) is significantly differ-

22% 74%

33% 66%

Graphical

Tabular

0% 25% 50% 75% 100%

Percentage Share

D
at

a
Sh

ap
e

GSheets

JSON

RDF

Format

Figure 4: Distribution of data authoring format used condi-
tioned on the shape of data being authored.

ent for graphical data authors (p < 2.2 × 10−16, df = 2).
Recall from our interviews that JSON was not a pleasant for-
mat among these authors, but they are driven to it by the lack
of good graphical data support in spreadsheets.

This is a quantified gap between the observed habits of data
authoring end-users and the tools the community has pro-
vided them. Either there has been a failure of industry to
understand the sophistication of end-user data modeling, or a
failure to properly integrate and educate authors about options
available to them. The Related Worksheets line of work pro-
vides a promising way to enhance existing spreadsheet UIs to
accommodate multi-valued tables and hierarchical data [3].
A similar way to enable better graphical data editing within
spreadsheets would also be welcomed by the community.

“Linked Data” is actually used
Why not just encourage authors to stick to strictly tabu-
lar data, which tools like Excel already expertly support?
One reason is the ability of the graphical data model to
“link” entities together based on their relationships. For ex-
ample, a list of Bob’s grandchildren may be expressed as
Bob.children.children. This is a powerful expres-
sive capability not possible with the tabular model, and our
data shows that authors are taking advantage of this power.

We measured the number of relationship “hops” used in Ex-
hibit configurations in the VIZ1800 dataset. Tabular data is
fixed at 1 hop, e.g., BOB.BIRTHDAY, whereas graphical data
can contain more than one. A T-Test (p < 3.2 × 10−6, df =
591) shows that visualizations backed by graphical data have
configurations that utilize more relationship hops than non-
graphical data. In other words, authors who use more flexible
data models are also visualizing more complex relationships
in their data. Supporting graphical data editing in spread-
sheets would therefore directly support end-user visualization
needs, not just spurious data editing habits.

Authors follow examples, not self interest
Another phenomenon we observed was that authors will
choose between alternative approaches to a problem based
on the availability of design examples rather than personal
utility. This validates Weiss’ study of API selection in
mashups [24]. In our case, the result can be seen in the format
authors selected to publish their data.

Exhibit accepts data in a number of formats, including Excel,
Google Spreadsheets, CSV, and JSON. Table 1 shows that
JSON dominates over the others, and Google Spreadsheets is
the clear alternative. CSV is remarkably scarce given that it

0%

10%

0-10%
Property Coverage

47%

55%

Pr
op

or
tio

n
of

 P
ro

pe
rt

ie
s

JSON
Google Spreadsheets

20-30% 40-50% 60-70% 80-90%

Figure 5: Normalized histogram of property coverage for
properties of JSON datasets versus Google Spreadsheet
dataset. JSON data is more likely to contain low-coverage
properties, while Google Spreadsheets are more likely to con-
tain high-coverage properties.

Data Format Count Percent
JSON 1246 69%
Google Spreadsheets 580 32%
Bibtex 38 2%
RDF 25 1.4%
MS Excel 2 0.12%
Freebase 1 0.06%
CSV 1 0.06%

Table 1: Data formats used by Exhibit authors, the total count
of visualizations using each type, and the percentage of vi-
sualizations using each type. Note that because some visual-
izations incorporate data from multiples sources of different
types, this table adds up to more then 100%.

is the standard text serialization of spreadsheets, and Excel
is virtually absent as well. Are Exhibit authors simply more
comfortable with JSON and Google Spreadsheets?

If the interview population is representative of the VIZ1800
population, then a different explanation is more likely. Our
interviewees reported authoring data in spreadsheets and then
converting it to JSON for publication. When asked why they
took this unnecessary last step (publishing the Excel file to the
web would have sufficed), they cited following the examples
they found online. Our post hoc review of the Exhibit wiki
confirmed that virtually all the design examples used JSON
and the documentation tended to focus on JSON and Google
Spreadsheets. The easier paths to publication were less doc-
umented, and as a result virtually unused.

Self-describing data formats are used more flexibly
Separate from the topic of data model is that of data format—
the rules which govern the way data is written down. Data
formats can largely be divided into schema-based (such as
CSV and Spreadsheets) and self-describing (such as XML,
JSON, and RDF). Schema-based formats are more compact:
they list the structure of the data once, like the header row
of a CSV file, and it remains implied for the rest of the file.
Self-describing formats are more verbose: they always spec-
ify the structure of the data in full, so that a fragment can be
understood independent of its file.

One of the primary advantages claimed of self-describing for-
mats is that they permit adding “one-off” properties that are
relevant to only a small set of items. Adding a PETNAME

67% Set Oriented 33% Viz Oriented

19%

Timeline

14%

MapTable

19%

List

36%

Tile

12%

Figure 6: View types used in single-view exhibits.

column on behalf of just a single customer in a spreadsheet
might result in thousands of empty cells on the other rows, but
with a self-describing format, this change would only affect
the one customer record who actually used the property.

These kinds of “one-off” properties are an inevitability in
many real-world scenarios. We can measure them by looking
at a statistic called property coverage: the number of items
with a property divided by the total number of items in the
dataset. A coverage of 1 means every item has the property,
and a coverage of 0.1 means that only 10% do.

Figure 5 shows the distribution of property coverage of vi-
sualizations backed by JSON (self-describing) and Google
Spreadsheets (schema-based) in the VIS1800 dataset. JSON-
based data is more likely to have low coverage (> 50%) prop-
erties, and Google Spreadsheet-based data is more likely to
have high-coverage (> 70%) properties. This shows that au-
thors are in fact using self-describing formats differently than
schema-based ones in exactly the manner that the abstract ar-
gument for self-describing formats would suggest.

VISUALIZATIONS
This section examines how authors designed their visualiza-
tions. Recall that Exhibit visualizations are divided into three
primary components: views, such as a map, timeline, or ta-
ble; facets, which provide searching and filtering functional-
ity; and lenses, which are miniature web templates for data
items. These three components are woven into the rest of the
web page with HTML.

Exhibits can have multiple views, displayed either modally or
side-by-side. The mean view count is 1.4 and the median is
one. 70% of Exhibits have one view, and 20% have two. The
highest view count observed is 6. Exhibit visualizations have
a mean of 3.1 facets and a median of 3. The most facets of
any Exhibit in our dataset is 26. Only 17.5% of all Exhibit
have no facets at all, which means that the vast majority of
Exhibit authors both understand the concept of faceted nav-
igation and consider the ability to filter sets of data a useful
enough feature to include in their visualization.

This section uses the VIZ1800 dataset to find three results.
First, we identify three distinct data publishing needs: navi-
gation, visualization, and “just plain publishing”. We show
correlation between heavy use of a component and the com-
plexity with which it is used. The most important and final
result is that Exhibit authors tend to publish visualizations
separately from text articles and need CMSs to allow them to
take over the entire web page.

Navigation, Visualization, and Just Plain Publishing
The motivation of the Exhibit paper hypothesized that there
were communities of authors who wanted to (1) provide nav-
igation through and (2) visualize the relationships between

0 5 10 15 20 25

Media

Text

Media
Type

median 4

median 2

Figure 7: Of Exhibits that have only one view, text-only views
have significantly more facets than rich-media views.

sets of items, but they were unable to do so because they
lacked the proper tools. This claim was left unevaluated, and
in this section we use data from the past eight years of Exhibit
use in the wild to supplement our user interviews in demon-
strating that this community, and these two needs do exist.
We further show a third use evidenced in the data and inter-
views: using visualization frameworks as an on-ramp to web
publishing for individuals not familiar with HTML.

To show this, we simplify the dataset by filtering it to only
those Exhibits with a single view, 70% of all Exhibits to-
tal. This represents the set of visualizations with a focused
purpose (i.e., just showing a map, or just showing a table),
the breakdown of which is shown in Figure 6. 80% of these
single-view Exhibits have facets.

Maps and timelines make up 33% of these Exhibits, which
we claim are primarily used to visualize the relationship be-
tween data. Text-only Exhibits (lists, tables, and tiles) make
up the other 67% of this collection. These Exhibits could have
easily been reproduced in HTML alone except for Exhibit’s
faceting, sorting, and searching functionality. This extra func-
tionality must have been the reason these authors spent time
learning and deploying Exhibit on their site, demonstrating
that data navigation is at least as important as visualization
among Exhibit’s user population.

By examining the distribution of facets for these two groups
we can strengthen this distinction. We can infer that if an au-
thor’s goal is to provide data navigation, she will have an in-
centive to provide more facets than if her goal was visualiza-
tion of the relationship between items. Figure 7 shows a box-
plot of facet count for the groups. Sure enough, text-only Ex-
hibits (lists, tables, and tiles) contain significantly more facets
than media-based Exhibits (t(n = 1005) = −7.75, p <
2.2× 10−14).

Use of Exhibit as an on-ramp to HTML publishing is evi-
denced by the existence of text-based Exhibits with no facets
at all. These tables or lists could easily have been ordinary
HTML, but copying and modifying an example Exhibit con-
figuration, which provides separation between the HTML de-
sign and data storage, must have been easier for these users
than authoring the data as HTML. Author 7, who used Exhibit
to publish a solitary HTML table, falls into this group.

Those who author more, author more complexly
Do big data sets beget complex visualizations? Exhibit cer-
tainly permits complicated visualizations: the most views we
observed stacked into a single Exhibit were 6 tables and 3
timelines, and the most facets we observed in a single Exhibit

Views

Items

Properties

Lenses

Lens Complexity

Facet Complexity

Views

Items

Properties

Lenses

Facets

Lens Complexity

Facet Complexity

Facets

.37

.38

.60

.47

1.0

0.0

0.5

Data

Visualization

Configuration

Figure 8: Correlation matrix between several data, visualiza-
tion, and configuration-centric attributes. Notable is the lack
of any strong correlation between aspects of the data and the
properties of the visualizations created for that data.

was 28! But, as Figure 8 shows, the cross correlation between
several attributes related to data, visualization, and configura-
tion complexity is weak. Big datasets do not necessarily mean
big visualizations.

The strongest relationship observed was between lenses
(HTML templates used to style an item) and the complexity
of configuration expressions within those lenses (r = 0.6),
indicating that people who override the default design styles
of a visualization more often are also likely to be modifying
them more heavily. A similar, but weaker relationship was
found for facets and facet expression complexity (r = 0.47).

Page Layout
The most important observation in this section is about page
layout and what visualization authors need from their CMS
software (recall that the CMS publishing experience was a
point of complaint in interviews). Here we ask two questions
about visualization design to help guide CMS improvements
for the visualization community:

• How do authors lay out visualization components?
• How do authors integrate visualizations with the text con-

tent on their sites?

To answer this first question, we coded the layout patterns
of Exhibits found in the TOP100 dataset. The results are
shown in Figure 9, with the view area depicted in white and
the facet/search ares depicted in red. The results show that
left and right sides of a visualization are overwhelmingly the
preferred places for navigational elements. Over 80% of all
facets we coded were placed to the side of a visualization, and
over 50% of visualizations used the sides exclusively.

CMS software typically constrains authoring to a center col-
umn of text flanked on the sides by one or two columns re-
served for automated content (links, navigation, etc). But ac-
cess to this center column alone does not provide authors the
required width to display both a visualization and filtering
widgets to manipulate the visualization. To support the visu-
alization community, it is therefore important that CMS mak-
ers either allow authors to override the side columns with cus-
tom, page-specific content, or to take over the page entirely,
stripping it of the CMS-provided UI chrome.

Viz

34% 21% 20% 12% 7%

3% 1% 1% 1%
FacetsView

(147)
53%

(82)
30%

(39)
14%

(9)
3%

(b)(a)

Figure 9: (a) Raw counts of facet location in the TOP100
Dataset. Most facets occur to the side of the visualization.
(b) Counts of global visualization layout in TOP100 Dataset.
Over half utilize a two-column format.

To examine how authors integrate visualizations with text
content on their sites, we programatically analyzed the
HTML structure of the pages which contain each visualiza-
tion in the VIZ1800 dataset. For each page, we recorded
two statistics: the total amount of text on the page in char-
acters and the size of the largest single text node (e.g., what
was the longest paragraph (<p>) element?). We also recorded
these statistics for several well known websites. We then in-
terpreted these measurements with the following heuristic: if
a visualization is embedded in an article as supplementary
information, we should expect the text statistics of the web
page to appear like other pages known to contain articles. If
the visualization stands alone, on a page by it self, we should
expect much less text than on an article-containing page.

Figure 10 shows a scatterplot of the data. The horizontal axis
is the amount of total text on each page, and the vertical axis
is the largest block of text. Web pages containing Exhibits
are shown in black, and reference points are shown in red:
the 2014 CHI CFP, the front page of Slashdot.org and Red-
dit.com, and randomly selected articles from the New York
Times, Washington Post, and Chronicle of Higher Education.

These results show that Exhibit visualizations are overwhelm-
ingly published as stand-alone content that occupies its own
page, not supplementary figures woven into articles. 85% of
the points are strictly bound by the point representing the New
York Times article, itself the smallest of our reference points.
The remaining reference points are at the extremes of the col-
lection. The line visible at y = x represents web pages that
contain only a single unit of text outside the visualization.

CMS builders can use this information by prioritizing sup-
port for page-centric visualizations over interactive features
embedded in prose. It may be that we simply have not yet de-
veloped the journalistic culture of mixing the two forms yet,
though recent publications like the Snowfall feature by the
New York Times [7] and several interactive web adaptations
of papers from Berkeley’s AMP lab [18, 2] show that there is
high payoff when text and interactivity are integrated well.

BROWSING BEHAVIOR OF EXHIBIT SITE VISITORS
We tracked the behavior of 33 thousand distinct site visitors
accessing 57 different Exhibits whose authors agreed to par-
ticipate in our study. We limited our analysis to only the
first 30 minutes of interaction for each IP address, the ses-

Washington Post
Chronicle of Higher Ed

CHI 2014 Call for Papers

NYT

10 100 1,000 10,000
Total Text on Page (characters)

La
rg

es
t T

ex
t N

od
e

on
 P

ag
e

(c
ha

ra
ct

er
s)

10

100

1,000

793229
meanmedian

108mean

48 median

Slashdot.org

Reddit.com

Figure 10: Nearly all the Exhibits in our dataset are stand-
alone visualizations, not inline supplements to an article. Ref-
erence points (red) of articles on the web contain far more text
(horizontal axis) and far larger paragraphs (vertical axis) than
the pages in our dataset.

sion timeout suggested by prior work [8]. While we do not
have the space for a detailed discussion, we preview here a
few observations about browsing behavior:

If possible, visitors favor interaction. 93% of visitors who
could interact with an Exhibit visualization did. Interaction
was either switching between multiple views or filtering the
data in some way. The duration of interaction nicely fits an in-
verse exponential curve with respect to time, validating prior
results in faceted browsing systems [21].

Visitors browse in contract-and-expand cycles. Browsing
behavior follows a pattern of contracting the displayed dataset
(via text search or facet filtering) and then expanding the
dataset—a clear indication of browsing rather than searching
for a particular item. The number of contraction-expansion
cycles follows an inverse exponential curve, depicted in Fig-
ure 11. The average contraction phase consists of 1.7 filter
actions (stddev 0.8) and the average expansion phase is 1.2
filter actions (stddev 0.8).

Design choice affects browsing habits. The maximum filter-
ing achieved by viewers is significantly different when visu-
alization authors provide just text search, just facets, or both.
For facet-only visualizations 41% of viewers filter the dataset
to under 5% of its initial dataset size. That number is 84%
for text-search only visualizations and 94% if both filtering
mechanisms are available.

One advantage of the star model for visualization construc-
tion is that its constrained processing model (data at the cen-
ter, filters and views on the spokes) and declarative invoca-
tion allow easy collection and processing of usage statistics
across wildly different visualizations: actions such as filter-
ing, searching, aggregating, and switching views are invari-
ant to widget implementation details. We plan to follow up
on these initial results with a more complete study of in situ
visualization browsing behavior.

10

1000

0 20 40
Length of Filter / Expansion Cycle

Co
un

t (
lo

g)
A

AB
C

A

Filter Filter Expand

B C

Filter Expand Filter

Ends on a filter Ends on an expansion
Figure 11: Histogram of the length of contraction-expansion
cycles when visitors filter and unfilter data.

CONCLUSION AND TAKEAWAYS
This work provided a mixed-method, full lifecycle analysis
of set-based information visualization on the web using the
Exhibit framework. Among our chief takeaways are:

• A wide range of users find that the star programming model
is both simple enough (novices could use it) and power-
ful enough (professionals prefer it to alternatives) to meet
their needs. We recommend visualization framework au-
thors consider exposing functionality in this style.

• End-user data modeling habits are more sophisticated than
their authoring tools. Most Exhibit users author supratabu-
lar data, but spreadsheets lack native support for it, so they
often (unhappily) turn to text formats as a result. We rec-
ommend that spreadsheet makers consider adding support
for data models more complex than a simple table.

• Exhibit authors follow the design examples available to
them, even if it results in unnecessary labor. Good doc-
umentation remains a critical but undersupplied resource,
and copy-able design examples are particularly important.

• Visualization and data interface authors have layout needs
that exceed the options CMSs provide, and they struggle
with their CMSs as a result. Toolkit builders should en-
sure their Javascript can be loaded from the <body> of
a page, and CMS builders should enable user control of
either the full page (discarding the theme) or the sidebar
gutters (which are typically reserved space).

• The star model offers bright possibility for studying how
web readers interact with data. Its constraints allow for a
wide variety of interfaces, but provide a standardized data
bus that enables unified behavior tracking across varied
end-user creations.

We additionally provide an interview-based sketch of the mo-
tivations and practices of the Exhibit community and a dataset
and design gallery of the visualizations this community has
created. This community has sophisticated intentions for
their data but often no formal training in computer science.
The star programming model Exhibit utilizes has enabled
them to translate these intentions into working interfaces, and
in many cases has provided an environment within which to
learn to build more complex displays.

REFERENCES
1. Altinas, I., Berkley, C., Jaegar, E., Jones, M., Ludaescher, B.,

and Mock, S. Kepler: An extensible system for design and
execution of scientific workflows. In Proc. Future of Grid Data
Environments, Global Grid Forum (2004).

2. Bailis, P., Venkataraman, S., Franklin, M. J., Hellerstein, J. M.,
and Stoica, I. Probabilistically bounded staleness for practical
partial quorums. In Proc. VLDB (2012).

3. Bakke, E., Karger, D. R., and Miller, R. C. A
spreadsheet-based user interface for managing plural
relationships in structured data. In Proc. CHI (2011).

4. Bostock, M., and Heer, J. A graphical toolkit for visualization.
In IEEE Trans Vis and Comp Graphics (2009).

5. Bostock, M., Ogievetsky, V., and Heer, J. D3: Data driven
documents. In IEEE Trans Vis and Comp Graphics (2011).

6. Bostock, Michael and Heer, Jeffrey. Declarative language
design for interactive visualization. In IEEE Trans Vis and
Comp Graphics (2010).

7. Branch, J. Snow fall: The avalanche at tunnel creek. In The
New York Times (2013).

8. Cooley, R and Mobasher, B. and Srivastava, J. ”Data
Preparation for Mining World Wide Web Browsing Patterns.
Journal of Knowledge and Information System (1999).

9. Gantt, M., and Nardi, B. A. Gardeners and gurus: Patterns of
cooperation among cad users. In Proc. CHI (1992).

10. Gross, P., Herstand, M., Hodges, J., and Kelleher, C. A code
reuse interface for non-programmer middle school students. In
Proc. IUI (2010).

11. Hartmann, B., Doorley, S., and Klemmer, S. R. Understanding
opportunistic design. In IEEE Pervasive Computing (2008).

12. Herman, I., Adida, B., Sporny, M., and Birbeck, M. Rdfa 1.1
primer: Rich structured data markup for web documents. In
W3C Working Group Note (2013).

13. Herring, S. R., Chang, C.-C., Krantzler, J., and Bailey, B. P.
Getting inspired! understanding how and why examples are
used in creative design practice. In Proc. CHI (2009).

14. Huynh, D. F., Karger, D. R., and Miller, R. C. Exhibit:
Lightweight structured data publishing. In Proc. WWW (2007).

15. Jones, M. C., and Churchill, E. F. Conversations in developer
communities: A preliminary analysis of the yahoo! pipes
community. In Proc. C&T (2009).

16. Karger, D. Standards opportunities around data-bearing web
pages. In Proc. HCIR (2012).

17. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling alice
motivates middle school girls to learn computer programming.
In Proc. CHI (2007).

18. Kraska, T., Pang, G., Franklin, M. J., Madden, S., and Feketey,
A. Mdcc: Multi-data center consistency. In Proc. Eurosys
(2013).

19. Lee, B., Srivastava, S., Kuar, R., Brafman, R., and Klemmer,
S. R. Designing with interactive example galleries. In Proc.
CHI (2010).

20. Newman, M., and Landay, J. Sitemaps, storyboards, and
specifications: a sketch of web site design practice. In Proc.
DIS (2000).

21. Niu, X., and Hemminger, B. Beyond text querying and ranking
list: How people are searching through faceted catalogs in two
library environments. In Proc. ASIS&T (2010).

22. Voida, A., Harmon, E., and Al-Ani, B. Homebrew databases:
Complexities of everyday information management in
nonprofit organizations. In Proc. CHI (2011).

23. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., and
Studer, R. Semantic wikipedia. In Proc. WWW (2006).

24. Weiss, M., and Sari, S. Evolution of the mashup ecosystem by
copying. In International Workshop on Web APIs and Services
Mashups (2010).

25. Witten, I. H., Bainbridge, D., and Boddie, S. J. Greenstone
open source digital library software. In D-Lib Magazine
(2001).

	Introduction
	Related Work
	Exhibit and the Star Model

	Dataset
	Authors
	Skills and Expertise
	Intent
	Data Creation
	Trial and Error Editing
	Copy, Paste, and Tweak Workflow
	Publication

	The Data Authors Publish
	The scale and topic of hand-crafted visualizations
	(Ab)using Spreadsheets to author non-Tabular Data
	``Linked Data'' is actually used
	Authors follow examples, not self interest
	Self-describing data formats are used more flexibly

	Visualizations
	Navigation, Visualization, and Just Plain Publishing
	Those who author more, author more complexly
	Page Layout

	Browsing Behavior of Exhibit Site Visitors
	Conclusion and Takeaways
	REFERENCES

