Appears in Proceedings of 2006 International Parallel and Distributed Processing Symposium (IPDPS
2006), Rhodes Island, Greece, April 25-29, 2006

Evaluation of UDDI as a Provider of Resource
Discovery Services for OGSA-based Grids

Edward Benson, Glenn Wasson and Marty Humphrey
Department of Computer Science, University of Virginia, Charlottesvilke, 2904

Abstract—Grid computing involves networks of heterogeneousesources working in collaboration to solve problemghat cannot be
addressed by the resources of any one organizatiofs.pervasive problem for Grid users is how best taliscover the resources they need
given dynamic Grid environments. UDDI, the Univers&Description, Discovery and Integration framework,is an OASIS standard for
publishing and querying discovery information for Web services, which to date, has received surprisilyglittle analysis as a discovery
mechanism for Web service-based Grids, e.g. thosaded on the Open Grid Services Architecture (OGSAJThis work identifies issues
that must be addressed in order to make UDDI meehe requirements of OGSA discovery. We examine theegformance implications of
these issues using a freely available implementati@f UDDI version 2. Based on our experimental redis, we conclude that UDDI can
be used for OGSA discovery, but the cost may be pnibitive for large Grids.

Index Terms—Grid computing, Web service discovery, UDDI, OGSA.

l. INTRODUCTION

WHILE GRID computing technology offers the ability to connect large, diverse grotipsidely

distributed resources to address complex problems, these same a$sseme and geographic
distribution require a sophisticated mechanism by which Grid userBnchavailable resources that meet
their requirements. Often, users will not know the exact namdsaksources they wish to use, but will
instead know only the abstract properties that those resources nmeestdshe discovery problem then, is
the problem of how to map a user’s requirements to a set of resdlateneet those requirements. While
several solutions for this discovery problem have been used, e.g. LDAPO{1ZIDS [4], as Grid
computing moves toward a Web services-based substrate, such abasddson the Open Grid Services
Architecture (OGSA [5]), it make sense to evaluate the Welnceeworld’s standard mechanism for
discovery, UDDI [3][10]. UDDI, the Universal Description, Discovenddntegration framework provides
a means of publishing and organizing information about resources and sulgequenying that
information to “discover” resources based on client-specified information.

Simply, the widely-accepted approach of next-generation Grids is #@ wtibling and run-time systems
provided by commercial vendors (e.g., Microsoft, Sun, IBM) and open-sourcetpr(geg., Apache) for
service/client development and inter-service communication; the @dteatue of UDDI is, by utilizing
UDDI, next-generation Grids could similarly leverage this taxigemerging broader support for discovery.
For example, just as Visual Studio.NET (VS.NET) has an "Add Wdbkr&ee" that easily generates
proxies to existing Web services via WSDL retrieval and praogsd/S.NET also has integrated
processing of UDDI registries. However, to date, Web servicadb@sels, such as those based on the
emerging Open Grid Services Architecture (OGSA), have notedilizDDI as a discovery mechanism and
it remains an open question whether UDDI is appropriate for ttks daghere have been surprisingly few
published studies on the utility of UDDI for Grids.

The questions identified and addressed by this paper are:

* What are the issues involved in using UDDI as a resource discovery mechanism foih@<ad
Grids?
» If UDDI does not “natively” meet the requirements of OGSA, what modificatians ar
necessary/sufficient to overcome these limitations?
* What are the performance implications of these modifications?
We examine these issues by using a freely available implatieen{"jUDDI" [9]) of the most-widely-
utilized version of the UDDI standard, which is version 2 (v2). We foocugersion 2 of the UDDI OASIS
standard because it is the dominant implementation available toddpratie foreseeable future, both
commercially and in open-source projects. Based on our experimenilisreve conclude that UDDI can
be used for OGSA discovery, but the cost may be prohibitive for large Grids.

The remainder of this paper is organized as follows. Section Zlesthe discovery requirements of
OGSA-based Grids and section 3 describes the UDDI protocol and itfmmniafrastructure. Section 4
discusses the issues in using UDDI for Grids and proposes solutiote$erissues. Section 5 evaluates
the performance of those solutions and therefore quantifies the tdd$DDI. Section 6 discusses related
work in resource discovery and Section 7 provides our analysis and rendatraes about using UDDI
based on our experience. We also discuss how changes made to theritaso¥¢he UDDI specification
may make it more suitable for discovery in Grids, although not without limitations.

II. RESOURCEDISCOVERY IN OGSA-BASED GRIDS

The Open Grid Services Architecture (OGSA) represents a na@anvof computing that merges the
worlds of Grid computing and Web services. The OGSA working group [ltheoBlobal Grid Forum [6]
has defined a standard set of roles that a set of servicedilinansbrder to perform canonical Grid tasks.
This paper focuses on two of those roles related to resource disdbeeGandidate Set Generator (CSG)
and the Information Service (IS).

The Information Service component of OGSA maintains a cataloguenafiyally varying information
about resources in the Grid. It can be queried by various components afckiiecture to discover
resources appropriate to a given task. One of the primary uséss loffermation Service is the Candidate
Set Generator. The CSG uses data stored in IS to generate tatididaf resources with the functional
properties required for a given operation. For example, the CSG mesgbtdo discover machines with the
correct architecture to execute a binary or storage resources that supgiefiRaransfers. However, the IS
also maintains information useful for selection of resources basewrefunctional properties, such as
load or available memory. It can be used (by a scheduler) in conjunction witls@G's output to select the
“best” candidate.

[1l. UDDI: DESIGN AND USE

UDDI is an OASIS standard protocol that defines a “standard methgdldshing and discovering
network-based software components in a Service Oriented Architecture (BOR)”

UDDI provides its functionality through four principle entities: thsinessEntity, businessService,
tModel, and thebindingTemplate. The businessEntity is the largest container within UDDI. It aiost
information about any organizational unit which publishes services foucut®n. The designers of
UDDI envisioned businessEntities as being UDDI representationstudl dusinesses that choose to offer
services over the Internet [capitalize?]. In the Grid contextnbasEntities can be used to hierarchically
separate and form relationships between different organizational groups wahtha multiple Grids.

Each service that a businessEntity offers is described by a gsSereice object. These objects provide
information about the service name, categorization, and any other ds¢dils added in a variety of
attribute lists. The information is purely descriptive and does natdaany instructions for accessing or
using the service.

The bindingTemplate object represents the link between abstractdai#neice descriptions and actual
endpoints at which these services may be accessed. Like allsabje¢DDI, bindingTemplates are given
universally unique identifiers, known as UUIDs, which are used as a key ohiefeEach businessService
object stores the UUID keys of bindingTemplates within the samadasEntity that provide instances of
that service.

BindingTemplates may provide specialized information about a partituisinessService endpoint
through use of tModels. The tModel is the standard way to describ#icspkstails about a particular
businessService or bindingTemplate in UDDI. tModels contain liskep#alue pairs used for description
and may be associated with multiple objects in the UDDI databhseg.may also contain placeholders for
URIs which point to descriptive information external to the UDDI registry.

V. Issues INUSING UDDI FOR OGSA DISCOVERY

UDDI was designed as a business directory system and has isutagdns that complicate resource
discovery in Grid computing. Namely, these are 1) a lack of ekplada typing for information in the
UDDI directory, 2) difficulties in handling dynamic information (sueh CPU load) that requires frequent
updating and 3) the limits of the UDDI query model. This section addresseefdhese limitations in turn
and proposes work-around solutions.

A. Lack of Explicit Data Typing

The ability to associate data types with resource metadétadamental for resource discovery in Grid
environments. Data typing allows not only more strict matching sduree information with resource
requirements, but allows a more diverse variety of comparison apeyag.g. greater or less than, than
simple equivalence for untyped values.

While UDDI contains many complex data types, such as the busmigsthid the tModel, it maintains
little notion of type for the data contained within these objects.tVloelel structure, for instance, is the
fundamental container of metadata that can be attached to an oltfgot WDDI. tModels contain two
collections into which metadata can be placed — the identifierBaghee categoryBag — each containing
zero or more keyedReference objects. Each keyedReference olgesemdially a key-value pair in which
both the key and the valuaust be strings. An example keyedReference is shown in Figure 1.

<keyedRef er ence

t Mbdel Key="uddi : cs. vi r gi ni a. edu: sanpl eKRef "
keyName=" SOVE_ATTRI BUTE"
keyVal ue="364. 3"
/>

Figure 1. Example UDDI keyedReference Object

String values are appropriate in the business world for which Ukd3l designed. In that context,
categorization of products and services (through discrete stringsyautne common use case. However,
Grid environments and the scientific community require classifiasgd on continuous variables, and so
the string-only keyedReference pairs hinder UDDI’s ability to gea search model capable of fulfilling
the basic queries of Grid users, such as performance-based resource selection.

To include the types of continuous variables, such as system load amalyhrsze, as meaningfully
searchable items within a UDDI registry, these variablest rbasflattened into enumerated sets of
predefined buckets into which the data will be placed. System loagdamnple, might be described with a
classification scheme in which machines are associated wilearent of the set { [0-0.5], [0.5-1.0], ...
[9.5-10.0], [10+] }.

This unavoidable approach has several drawbacks. First is the regecdttisy with which users will
be able to search for services on the Grid. In many cases Gridistdgators will want to define their
enumerated sets with unevenly spaced buckets to give a higher cgstduthe possible ranges that are
more important for performance. Such non-standard enumerations also etenpéarching because all
clients must know the range breakdowns in order to formulate their queries.

Finally, range-based searches are complicated by this methodr Auesy specifying a system load less
than 2, for example, would have to be translated into a query withies sar “OR” statements
encompassing all buckets between [0-0.5] and [1.5-2.0]. Support for range quielsethe requirement
that the process which translates from continuous variables to taR%es understand the ordering of
buckets in the range enumeration.

UDDI provides support for wildcard-based searching similar todfiated in SQL queries. Users have
the option of single-character wildcards with the *_’ character and multiplaateamildcards with the ‘%’
character. Using these two operators and the method of using ordsréol replace continuous variables,
we can potentially generate simpler queries by mapping the refnttes range sets to appropriate strings.
For example, suppose machine memory size is represented by one of thiedolbowes, { [0-255], [256-
512], [513-1024], [1025-2048], [2048+] }. We can perform queries of the form “find machine with X
amount of memorpr more” by storing not the textual representation of the range in whicimtehine’s
memory falls, e.g. [513-1024], but rather a string representation aidbg of the range within the range
set. So, if a machine’s memory fell in the [513-1024] range, we woold a string like “AAABB”, where
the number of A’s indicates the index of the desired range (ircdlses, it is the third in the range set). B’s
are then used to fill out the string until it has as many charaagdigere are possible ranges (in this case 5).
Such a formulation allows wildcard queries like “AAA%” to find amachine that has a memory size of
513 MB or more.

This enumeration-based scheme with wildcard extensions does notumdke UDDI's inability to
handle typed data, but it does allow UDDI to provide an approximation ahéfvec-based searching that
the Grid community expects from a resource discovery service.

B. Dynamic Service Data

UDDI is targeted at not just Web services discovery but als@ad array of uses including everything
from industry directories to product information databases. One adtributommon with all of the
intended uses of UDDI is relatively static data. Perhaps becdubkes assumption, UDDI has no built-in
notion of dynamic service information or any other mechanisms in which thexcohttored data changes
over time.

The implications of this inability to the Grid community are qlarge. This makes it difficult for UDDI
to make available such important time varying information as @&d. However, potentially more serious
is the inability to represent transient resources. While sords Gould consist of dedicated machines
running in a tightly-managed environment, many Grids leverage they abidraw resources from home,
work, and other “dual-use” computers which are not full-time availabléhe Grid. In this type of
environment it must be assumed that the availability of resources is not only unptedmiaalso that this
unpredictability will put the burden of maintaining up-to-date availgbilformation in the resource
discovery service. In other words, resource providers can not be exgectemove appropriate
serviceBinding records from a UDDI registry when the associated resouccesebenavailable.

This “dangling bindings” problem can hinder the performance of a Gridamaent as it stands to
clutter an accurate registry of resource information withefegsords. As the number of resources in a Grid
grows, the likelihood that service discovery attempts will return dangling bindiogsases.

As a work around to this problem, resource providers may send a peteditbeat” update message to
the UDDI server at defined intervals. This update messageaefiédsh a lastUpdateTime field inside a
tModel that is associated with all bindingTemplates in UDDI ownethat resource provider. Because of

UDDI's lack of support for data typing (and hence queries such as agpdaire recent than X”), the last
update time must be represented as an interval rather thancgarspresentation of a literal timestamp.
While fortunately this approach does not require that all clocks irGGtige be synchronized (a daunting
task), it does require that the background heartbeat process be apjdyta transformation that converts
the sender’s local time into one that matches the global time ilgtersd by the UDDI registry (and hence
recognized across the Grid).

Assuming this approach, Grid users can avoid receiving candidatef sesources that contain stale or
unavailable resources by including a filter in the query requiring malghines that have a lastUpdateTime
equal to the current (and possibly previous) time interval. Includingridangous time interval trades the
possibility of erroneously receiving recently disconnected macharebé assurance that one is searching
the whole pool of providers, not just those that have chosen to update dunogtitve of the current time
interval prior to the search.

Following this practice, the probability of a stale result withicandidate set is measurable. At any query
time s local to the beginning of an update interval of lerigthe probability of picking a machine that is no

longer available ist =< p » Where p is the probability that a given machine will abruptlyodisect from the
t

Grid, with all machines on the Grid choosing to send updates at an estghutibn across the entire
update interval. This equation makes the simplifying assumption thetimea disconnect only during
update intervals in which they did not and will not send an update.

The specification for UDDI version 3 does not incorporate any waydeide the updating framework
needed to replace the practice suggested here, but this paper dat@®@stmethod of achieving the same
capability with a measurable amount of error. After deploying andrabhgea Grid using UDDI,
administrators can take advantage of the measurability of tyesafyerror to optimize the update interval
length.

C. Search Mod€

For UDDI to be successful as a resource discovery serviceidhe@vironments, it must be able to
respond to requests such as “find a resource that can perform tasla Xhachine with properties W, Y,
and Z with guarantees A and B.” To date, the only available impleti@mt of UDDI conform to version
2 of the specification and so this section discusses that version (subtle, butntgiffdeences exist in the
discovery models of version 2 and version 3 and these are discussed in section VI).

Ideally, a host offering resources to a Grid should be able to publggries of bindingTemplates to
UDDI, each of which represent the endpoint of a particular Web sebéimg offered at that host. Each
bindingTemplate would then contain the UUID key of a tModel maintainethdtyhost which contains
both dynamic and static performance information of that host asawéfie time of the last update of this
information. At regular intervals, the host would update the informatiored in this tModel, thus
changing the metadata associated with all of the bindingTempeteseference it. Grid users wishing to
locate bindingTemplates for a particular service would specifgtwhystem performance characteristics
are required for the job at hand, and UDDI would do a “deep search” obimatingTemplates and their
associated system performance tModels. Figure 2 illustrates this otganiza

Grid Zone

Grid Service (projected) ‘

Grid Service (projected) ‘

Machine X
Performance Statistics

‘ Binding Template 7
‘ Binding Template ‘ /’{ Machine ¥

Grid Service (projected)

Performance Statistics

Binding Template

Binding Template

Figure 2. Desired UDDI Organization

UDDI version 2 does not contain the functionality to create such ieedediscovery scenario. The
fi nd_bi ndi ng API call in UDDI version 2 only allows clients to specify th&JID keys of desired
tModels, not place query criteria upon the key-value pairs within tivdseels. Two separate approaches
for querying against tModel can be taken, but both have side effects that degrade pedorma

The first method is to map tModel identifying keys to labels teptesent various enumerated intervals
for the selected performance metric. In other words, the key igaloe. Free disk space, for example,
would be described by a set of tModels that represent each of thelgpoarge intervals that have been
established for this metric. The keys for these tModels would be, for example, “100-2061Brf“1+GB
free”. These keys, or possibly some well-known formula for construt¢hiegn, must be known by all
machines on the Grid. At each update interval, resource providersadssgaah of their bindingTemplates
with the proper tModel for each metric that the resource providéewi® report. Under this scheme, there
is no central place where an administrator could go to view a neshiurrent status — the administrator
could only view this information by examining the associations atdageveen the global metric tModels
and a bindingTemplate owned by the machine. Figure 3 illustrates this design.

Grid Zone

CPU_LOAD_0.5-1.0

Grid Service (projected) ‘

Grid Service (projected) ‘

Grid Service (projected) CPU_LOAD_2.0-2.5

Binding Template
MEM_FREE_64-128

L Binding Template
MEM_FREE_128-256

Figure 3. Association of Performance Data with bindingTemplates in UDDI v2

This technique accomplishes the task of allowing machine matrios integrated into bindingTemplate
gueries, but at a performance cost due to the difficulty of updatingath®f each machine updating a
single performance tModel during update intervals, each machine must gjaga of its bindingTemplate
records. For Grids with many general-purpose resource providers dadngothe use of many Web
services, the extra updates required (equal to the average nurbbeiof Templates per host) per update
interval can noticeably impact the performance of the UDDI server.

A second method of associating machine attributes with bindingTemphataves a two-step searching
process. Each resource provider maintains all performance data wiiki tModel and associates its
bindingTemplates with this tModel. Each update interval, the provider need only updated record, but
Grid users must perform two queries to find an acceptable set of binding endpoefsst query searches

the contents of all tModels in the UDDI registry and returngstadf those matching the machine
requirements for a particular task. The second query searcha@sdatigTemplates in the registry using the
tModel keys returned as the results of the first search as filteringacriter

As the size of the Grid and the number of stored tModels growsethetarned by the first search may
grow large enough to cause noticeable delays from the perspecthe @fid user. One potential solution
to reduce the size of the tModel list returned by the first gigeetp put back-references within each
machine’s performance tModel which contain the keys of the businegsSethat the machine offers.
These back-references can be used as filters in the firshs&athat only the tModels of machines which
host the desired service are returned.

Consideration is due before using back-references to limit thehseasults, however, because this
practice seems to violate the intended separation of informatibomwiDDI. tModels provide descriptive

data about bindingTemplates, but are arguably not supposed to contain anydgeosil¢he entities that
reference them.

V. PERFORMANCE

Section IV outlined the three main hurdles in applying UDDI versios 2 i@source discovery service to
OGSA Grids and how these hurdles may be overcome or at least deding section outlines the
measured performance of a publicly-available UDDI implementatigfDDI" [9], which is compliant
with UDDI version 2), in a simulated Grid environment that wasigedt the University of Virginia. In our
experiments below, we are careful to distinguish propertiestimssethat we believe can be attributed to
the UDDI specification (and thuall implementations, from our judgment) vs. those that should be
attributed to the specific implementation of the UDDI specification that wegest (jJUDDI).

Figure 4 illustrates the experimental setup. The experiments wanducted in a 100 Mbps LAN
environment. The bottom of the figure shows a jUDDI server running Apache/Linux environment on
a 1.4 GHz AMD Opteron machine with 2 GB of memory. The top of therdighows the remaining
machines utilized (up to 14), each running client software implemémt€d¢ on Microsoft Windows XP
Professional. The client software was divided into two layersiover layer ("UDDI client") wrapped the
UDDI API and translated it into a Grid-centric API for res@uptoviders and Grid users. The intention of
this layer was to take the initial steps to create a stdnaeource discovery service API that would
function with any off-the-shelf UDDI implementation running behind itQGSA terms, this software
layer uses UDDI to implement the behaviors which characteheeCandidate Set Generator and the
Information Service.

Simulated Grid
Resource Providers
and Consumer:

Simulated Grid
Resource Providers
and Consumer:

UDDI client UDDI client

jUDDI Server]

Figure 4. Architecture used for UDDI Evaluation

On top of this layer, we designed a system that simulates cespraviders and Grid users. This simulator
was used to construct a number of different Grid environments and eehsuperformance of UDDI

under different levels of sustained activity. We use shading urd-ifj to denote the simulated pieces, to
reinforce that we did not simulate the UDDI server, only thentdiservices interacting with the actual

UDDI server.

We used three metrics to measure the performance of UDDifisdhe the jJUDDI implementation of
UDDI) as a provider of resource discovery services: systemdaathe UDDI hosting machine, mean
update time for service provider information, and mean query timeierped by Grid users. The first
metric gives a rough indication of how much activity the UDDI seivexperiencing under the simulated
Grid conditions, while the second two metrics gauge how this duréddsevielt by providers and users of
the Grid.

System load was measured as a function of both resource provider fnedatency and search
frequency. Figure 5 shows the results of the average system |dae ODDI server when subjected to
resource provider update frequencies between five and twenty-five updaitegcond. Each “update”
consisted of one simulated resource provider updating information abaudanrdahree out of a possible
ten resources (meaning that we were simulating a Grid environmewtich only an arbitrarily small
number of the total possible services were actually instantiated on any pagrail@ode).

System Load

— +
5 7.5 10 15 20 25
Updates per Second

6
5 /
e}
8 4
-
£ 3
2 //4
22
@ N
1
0

Figure 5. UDDI System Load as a Function of Update Rate

The results of this test show that server load increased rouigbéyly with update frequency. A test of
35 updates per second was performed but was not included in Figure 5 he€ddisperformance slowed
to such an extent that only a portion of the attempted updates wereahiccessfully complete within
their target update intervals. During this unsuccessful testo#geaverage rose to an average value of 8.9.
Note that our UDDI server is a dedicated, "average-spec" desktop machine circa 2003.

The time required to perform an update was also measured to lyangacreased load on the UDDI
system would be experienced by providers submitting new resource atimnmAn update was defined as
one resource provider refreshing the tModels and tModel-bindingTemslsteiations that represent its
current performance characteristics. The time required to pedgstem updates was measured using ten
machines each simulating up to thirty-five resources. Each resougeer offered a random three out of
a possible ten services and updated its system performance metrics oncenesenygrids.

The results of this experiment show that update time remaats/edy constant as long as the number of
updates per second remains below twenty. After twenty, a steepcasrs. Figure 6 shows a summary of
the data recorded during these tests. Each data point represetds-thimute average of all measured
update times at that level of activity.

Update Time

0.3

0.25
/
0.15 ,/

——— ¢o—

o
N}

Update Time (s)

o
i

0.05

5 7.5 10 15 20 25
Updates per Second

Figure 6. UDDI Update Time as a Function of Update Rate

A final test performed with a target of thirty-five updates ggrond was not incorporated into this graph
because only a fraction of the updates were able to take place dadhgipdate interval due to slowed
performance.

While it is important to keep in mind that these results apply only to jUDDI, we behew@hape of these
curves will apply to any implementation of UDDI v2 (and jUDDI ipapular, open-source implementation
worthy of study in its own right). Our tests show that for modaxatarge Grids, maintaining accurate
resource information may push UDDI beyond its limits, and so a dioskrat how the number of updates
per second can be reduced is needed, which we consider in the remainder of this section.

This project evaluated the first of the two methods for assogiatiachine performance data with
bindingTemplates, depicted in Figure 3. This required that each respuoseder update three
bindingTemplates each update interval instead of one performance tNaadkthe second of the two
proposed methods been chosen, only a single tModel update would have been respudg the
number of update messages by a factor of three for our partiestagrtvironment. However, this would
have required the UDDI client to perform two queries to discover apatemesources -- one to find
applicable resources and one to find which of those currently has appropriate perfotmaaacteigstics.

As a test of the UDDI client experience, we measured the tequired to perform a search upon the
resource information stored in UDDI as the number of simultaneoushesancreased. The average time
required to perform bindingTemplate searches on the UDDI regissymeasured using twelve machines,
two of which simulated resource providers and ten of which simulaieldu&ars. The two machines acting
as resource providers simulated a total of twenty-five providesh eHering three randomly chosen
services out of a possible ten services. Each simulated resoaw@eprupdated its system metrics every
ten seconds. The ten machines simulating Grid users performed édtveeand fifty-five queries on the
UDDI data per second. Each query requested a randomly chosen seratéheuen available and limited
the query with a desired system load average. Each level ohdeaguency was sustained for ten minutes.
The data points in Figure 6 represent the 10-minute average of thermafrsbeonds required to complete
gueries as experienced by the ten machines simulating Grid users. Figure 7 shiesdthef these tests.

10

Query Time

0.3

0.25 2

02
0.15

01 /
0.05 ’—"‘_—"/4/(

5 15 20 25 35 45 55

Search Time (s)

Searches per Second

Figure 7. UDDI Query Time as a Function of Simultaneous Searches

Because the user only performs a UDDI query once, at the beginniagcbfjob request say, these
average search-times would seem to be acceptable. This infomngati be of further use in helping Grid
administrators anticipate the expected performance of a busineaspus Grid as the number of users
grows (especially important, perhaps, if multiple universitieh wampus Grids make the decision to
merge their Grids).

VI. RELATED WORK

This paper assesses the utility of using UDDI for resourcewksg in grids in order to see if existing,
widely deployed, commercial and open source UDDI implementations camillzed for this task.
However, there are several other resource discovery methods guemplioyed in the Grid community.
The Lightweight Directory Access Protocol (LDAP) is a siifigudl version of the X.500 Directory Access
Protocol (DAP) which specifies a means of organizing and aocessiormation directories over the
Internet. LDAP is often used in organizations as a means of stparspnnel, service, and network
topology information. Users of LDAP access information organizedhierarchical directory tree. Each
level of the tree contains attribute-value pairs of informatiowedksas links to lower levels. While LDAP
by itself is not a candidate for the role of resource discovery aotuiin OGSA Grids (at heart it is a means
of storage and organization, not of description and discovery), LDAP’&ifigxhas made it the choice for
a number of resource discovery solutions, including MDS, the Monitoring atd\ery System [4] used
by the Globus toolkit [7].

The Globus Toolkit's Monitoring and Discovery System (MDS) uses B@@\ publish information about
the current state of resources in a Grid environment. An Index 8qmuawvides the capabilities of the
OGSA Information Service and includes data refreshing mechanshgrevent stale data from being
returned in query results. MDS'’s Trigger Service monitors MDS'’s databgdtal certain preset conditions,
providing a means for asynchronous alarms and warnings to be sent to interested parties.

Carnivore [8] is a registry service from the Internationaittudl Observatory Alliance. Carnivore
allows clients to query XML records of resources using the XQlaaguage. While this gives Carnivore
clients powerful query abilities, it does not allow the use of existing UDDitslie

A new standard, WS-Discovery [2], is a recent addition to the \ebices stack that offers a
decentralized approach to service discovery. Devices following theDMt®very protocol multicast
discovery requests to a multicast group and receive responses fromegsourders within that group. To
prevent unnecessary multicast traffic, “discovery proxies” cangooups to act as central, unicast-based
points of reference for discovery queries. In Grid environments, WS-Discailemost likely be useful as
a complimentary technology to MDS and/or UDDI-based discovery. Large scaieastitig can generate a
large amount of traffic and can be unreliable across differentidemaad organizations. However, WS-
Discovery services could be used for local discovery and then providertfemation to a Grid-wide
catalog such as MDS or UDDI.

11

While this paper has outlined deficiencies with UDDI version 2 aatisns involving a wrapper
around a UDDI version 2 service, these same issues are beingsaddet the standards level by the
UDDIe project at Cardiff University [1]. UDDIe is currengiploring ways in which UDDI version 2 can
be extended to provide support for data typing and dynamic service dataay that does not break
compatibility with non-UDDIe client software. The capabilitiesWdDI are often conceptualized as the
Yellow, White, and Green pages of service discovery. UDDIe addsitvteits the “Blue Pages” to store
quality of service and dynamic metadata about businessService records within eegiSiy.

While the UDDIe project has met with success at extendingJel framework, a drawback to this
approach is that any solution which requires the modification of UBEs code and APIs removes a key
reason why UDDI is a good candidate for resource discovery in @vicbaments. That is, a large part of
the attractiveness of UDDI stems from the fact thatatweell known, supported industry standard. A Grid-
centric resource discovery solution utilizing UDDI “as-is” automdgidzenefits from the rich development
community and resources already surrounding this technology.

Lastly, the Blue Pages of UDDIle are implemented as assefi attributes that may be appended to
businessService records in the UDDI registry; this new capability doegteatléo tModels, which remain
unchanged from UDDI version 2. Since users of UDDIle only benefit frmmaddition of typed data in
businessService records, the query model still does not permit tre tasmake use of typed data to
differentiate between different providers of a service. Users ltawever, use the benefits of typed data
when comparing the service-level characteristics of severml €arvices which might accomplish
equivalent tasks [1].

Finally, the UDDI committee of OASIS has recently reldagenew version of the UDDI specification
(version 3) [3], which was ratified by OASIS on February 3, 2005. UDDsioe 3 adds to the
bindingTemplate discovery API through the addition of thend t Mbdel argument in the
find_binding API call. Once implemented, this change will allow each providpegormance
information to be stored in a single tModel (depicted in Figure 2alhdllow this information to be used
as a criteria for bindingTemplate searches through a singleaPAnd no back-references. UDDI version
3 also supports enhanced security features, such as support for gigyitglres, on all objects. Richer
replication capabilities have also been added, allowing multiple UDDIrsgea@oss several organizations,
to each replicate portion of the other’'s data. Still lacking in Uladsion 3, however, is data typing. The
structure of keyedReference object remains the same in versiod 8pawumerical, range-based queries
are still not supported.

While work is being done to begin implementing this new specificatbngurrent open-source and
commercial implementations of UDDI are based on the version 2 stiandasion 3 implementations will
more closely match Grid requirements, but may still not be sufficient.

VIl. CONCLUSIONS / DISCUSSION

UDDI is an important component of the Web services stack thatdesigned to be used in a wide
variety of discovery scenarios. As Gredmputing moves toward a Web services-based infrastructure, it
makes sense to evaluate UDDI as a part of the OGSA archéedpecifically UDDI’s utility as a
Candidate Set Generator and an Information Service.

We have found that UDDI suffers from two primary limitationshis tcontext that stem from the issues
discussed in Section IV. First, it lacks a rich query model duésttack of explicit data typing and its
inability to easily perform bindingTemplate queries based on the s/aloatained within associated
tModels. This makes the inclusion of both functional requirements and rparfoe requirements within
the same query cumbersome, and therefore complicates Candid&erfeeation. Second, UDDI is not
well equipped to handle environments that contain resource providers withdictedle availability
because of its limited support for the expiration of stale data. This makekndD-ideal as an Information

12

Service which must catalog the current state of dynamic Gsigrsyg, but can be easily circumvented by
building this functionality into the provider and user software that accesses UDDI.

While we believe that UDDI version 2 is not an ideal solution fod Gomputing discovery services, we
have suggested a number of methods that address its chief éinstatid bring it closer to what is needed
to fulfill the roles of Candidate Set Generator and Informatiorvi&er These methods have been
implemented at the user-level, and thus can be used with any stacolawalgant version of UDDI version
2 or beyond.

The costs of using UDDI and the methods developed in Section IV ass&A @esource discovery
service have been quantified and explained in Section V. It is impdadanbte that even if Grid
administrators/users were tolerant of the update and query tiessnped in Figures 5 and 6, the jJUDDI
implementation begins slowing dramatically for update/query gatsster than those shown in the graphs.
In other words, even if UDDI was acceptable to the user communiges not scale well to handle large
numbers of Grid resources.

Though implementations of UDDI version 3 should become available réyatwen and will contain
structural changes that permit increased updating and querying pant@nthey will still lack the support
for typed and time-sensitive data required for level of serviceede®mr OGSA-based Grids. We therefore
conclude that UDDI, and in particular UDDI version 2 as implementegUbyl, is only appropriate for
small Grids in which scalability and precise performance reyprs secondary to the industry support and
ease of installation that accompany this technology.

REFERENCES

[1] A. Ali, “About UDDIe”. Cardiff University School of Computer Science
http://www.wesc.ac.uk/projects/uddie/uddie/about/index.htm. Accessed June 2005.

[2] J. Beatty, G. Kakivaya, D. Kemp, T. Kuehnel, B. Lovering, B. Roe, C. St. Joichlimmer, G.
Simonnet, D. Walter, J. Weast, Y. Yarmosh, P. Yendluri. Web servigaaniic Discovery (WS-
Discovery). October 2004. available at: http://msdn.microsoft.conmfleraus/dnglobspec/ html/ws-
discovery1004.pdf

[3] T. Bellwood, L. Clément, C. von Riegen, et al. UDDI Version 3.0.1: UD@¥cSTechnical Committee
Specification, Dated 2003-11-14. Organization for the Advancement of Sedctaformation
Standards, 2003.

[4] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid Infooma$ervices for Distributed
Resource Sharing. Proceedings of the Tenth IEEE International Sympasi High-Performance
Distributed Computing (HPDC-10), IEEE Press, August 2001.

[5] I. Foster, C. Kesselman, J. Nick, S. Tuecke. Grid Services forilidiggd System Integration.
Computer, 35(6), 2002Computer, 35(6), 2002.

[6] Global Grid Forum. http://www.ggf.org. Accessed June 2005.

[7] Globus Project. http://www.globus.org. Accessed June 2005.

[8] M. Graham. CARNIVORE: Open Source Registry.
http://nvo.caltech.edu:8080/carnivore/doc/Carnivore.pdf. Accessed October 2006.

[9] jJUDDI: Java Implementation of the UDDI specification. http://paehe.org/juddi/. Accessed June
2005.

[10] OASIS. UDDI Executive White Paper. http://uddi.org/pubs/uddi-exec-wp.pdf, adcésse 2005.

[11] Open Grid Services Architecture Working Group (OGSA-WG).
https://forge.Gridforum.org/projects/ogsa-wg. accessed June 2005.

[12] W. Yeong, T. Howes, S. Kille, Lightweight Directory Access Protocol. Reqae§tdmments: 1777.
ISODE Consortium, March 1995.

