
A

d
(
a
S
s
Q
©

K

1

f
d
a
2
m
d
p
t

s
d
u
w
e
b
s

(

1
d

Available online at www.sciencedirect.com

Web Semantics: Science, Services and Agents
on the World Wide Web 6 (2008) 61–69

Bridging the semantic Web and Web 2.0 with Representational
State Transfer (REST)

Robert Battle ∗, Edward Benson
BBN Technologies, 1300 North 17th Street, Suite 400 Arlington, VA 22209, United States

Received 2 June 2007; received in revised form 7 September 2007; accepted 6 November 2007
Available online 17 November 2007

bstract

Semantic Web technologies must integrate with Web 2.0 services for both to leverage each others strengths. We argue that the REST-based
esign methodologies [R.T. Fielding, R.N. Taylor, Principled design of the modern web architecture, ACM Trans. Internet Technol. (TOIT) 2
2) (2002) 115–150] of the web present the ideal mechanism through which to align the publication of semantic data with the existing web
rchitecture. We present the design and implementation of two solutions that combine REST-based design and RDF [D. Beckett (Ed.), RDF/XML

yntax Specification (Revised), W3C Recommendation, February 10, 2004] data access: one solution for integrating existing web services and one
erver-side solution for creating RDF REST services. Both of these solutions enable SPARQL [E. Prud’hommeaux, A. Seaborne (Eds.), SPARQL
uery Language for RDF, W3C Working Draft, March 26, 2007] to be a unifying data access layer for aligning the Semantic Web and Web 2.0.
2007 Elsevier B.V. All rights reserved.

ices

t
i
i
q
a
s
d
t

R
o
t
m
w
S

eywords: Semantic Web; Web 2.0; Representational State Transfer; Web Serv

. Introduction

The Web 2.0 and Semantic Web communities maintain dif-
erent strategies towards a similar goal—an interlinked web of
ata that exposes information for easy processing, integration,
nd reuse. The usability-centric developments that drive Web
.0 have resulted in an entire new economy of web sites and
ash-ups over the past few years, but the absence of semantic

ata descriptions on Web 2.0 has put a low ceiling on the com-
lexity that these sites can achieve. Each new mash-up requires
he hand-tuning of every service involved.

The Semantic Web has solved different problems. Formats
uch as OWL [16] and RDF [3] provide ways to semantically
escribe and align data from disparate sources, but the lack of
sable and agreed upon data access methods have prevented
idespread use of such data. Both disciplines need each other for
ither to realize their ultimate goals. Web 2.0 has a wealth of data
ut poor semantics and difficult integration. The Semantic Web
olves the integration issue but suffers from a dearth of users.

∗ Corresponding author. Fax: +1 703 284 1281.
E-mail addresses: rbattle@bbn.com (R. Battle), ebenson@bbn.com

E. Benson).

e
s
R
a
J
t
s
S

570-8268/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.websem.2007.11.002
An ideal solution would bridge the two disciplines so
hat their access points aligned. Existing web sites could
nter-operate with both OWL and RDF data while also serv-
ng as access points for semantically enabled clients or
uery architectures. This paper demonstrates that such an
lignment is not only possible, but it can be accomplished
eamlessly using the Representational State Transfer (REST)
esign methodology common amongst Web 2.0 developers
oday.

We first examine the REST methodology [2] and argue that
EST-based design is both a fundamental enabling technology
f Web 2.0 and a natural fit for Semantic Web operations. We
hen introduce our design and implementation of two compli-

entary strategies for REST-based alignment of the semantic
orld with Web 2.0. The first, the Semantic Bridge for Web
ervices, uses semantic tags on traditional SOAP and REST
ndpoints to allow their incorporation in semantic queries. The
econd, Semantic REST, defines a standard way through which
EST-based resources on Web 2.0 can be exposed, modified,
nd queried in RDF alongside their existing HTML, XML, and

SON endpoints. Finally, we show an example integration of
hese techniques by performing a distributed query across data
ources using both the Semantic Bridge for Web Services and
emantic REST.

mailto:rbattle@bbn.com
mailto:ebenson@bbn.com
dx.doi.org/10.1016/j.websem.2007.11.002


6 ices a

2

o
s
t
r
s
a
i
m
d

r

a
t
u
r
U
o
h
b
w

o
T
r
U
i
v
r
o
e

r
i
u
p
i

p
u
o
a

f

u
C
i
t
t
t
i

D
u
T
t

3

v
d
b
a

•

•

h
W
p
i
a
e
l

T
R

C

C
R
U
D

2 R. Battle, E. Benson / Web Semantics: Science, Serv

. REST-based Web design

Representational State Transfer is a pattern of resource
perations that has emerged as a de facto standard for
ervice design in Web 2.0 applications. Whereas the tradi-
ional SOAP-based approach to Web Services uses full-blown
emote objects with remote method invocation and encap-
ulated functionality, REST deals only with data structures
nd the transfer of their state. REST’s simplicity, along with
ts natural fit over HTTP, has contributed to its status as a

ethod of choice for Web 2.0 applications to expose their
ata.

Resources in a RESTful service are both identified by and
esolved with a URL that generally takes the form:

The combination of protocol, host, and application path serve
s a namespace for all resources contained within a site, and
he resource type and resource ID uniquely identify a partic-
lar resource within that namespace. Operations concerning a
esource type but not a particular resource are accessed by the
RL above without the ResourceID at the end. Thus a new user
n the site semwebcentral.org would be created using the URI
ttp://www.semwebcentral.org/user and a particular user would
e accessed via http://www.semwebcentral.org/user/ogrouch,
here ’ogrouch’ is the user’s ID.
At the core of REST based design is a set of state transfer

perations universal to any data storage and retrieval system.
hese operations, as commonly interpreted on the web, are

eferred to by the acronym CRUD [11], for “Create, Read,
pdate, Delete.” The Web 2.0 community has adopted an

nformal mapping of CRUD operations onto the commands pro-
ided by the HTTP protocol: POST, GET, PUT, and DELETE,
espectively. These commands identify the particular CRUD
peration being requested of the resource identified by the URL
ndpoint.

Table 1 presents a mapping of CRUD operations onto HTTP
equests. It is important to note that REST is not a standard
n the W3C sense of the word, but rather a design technique
nder active interpretation across the web. While the table below
resents one commonly used application of REST to the web, it
s not the only interpretation.

One wrinkle in this provided mapping is the refusal of some

ublic routers to forward HTTP DELETE requests. Due to the
nreliable forwarding of this particular command, the delete
peration is usually specified as either a URL-encoded request
rgument or a suffix appended to the request URL, such as the

f
d

r

able 1
EST to HTTP Mapping

RUD operation HTTP command

reate POST
ead GET
pdate PUT
elete DELETE
nd Agents on the World Wide Web 6 (2008) 61–69

ollowing example [11]:

A great benefit of REST-based web design is the ability to
se HTTP Headers to provide request context around each of the
RUD operations. A request to a particular resource might result

n HTML, XML, or JSON depending on the desired media type
ransmitted in the HTTP Accept header. This allows developers
o overlay the programmatic API for a website directly on top of
he site exposed to web users and reduces the cost and complex-
ty of providing multi-format access to a site’s underlying data.

rawing on the context provided by HTTP, a web site operating
nder REST principles can be viewed as a web-accessible API.
he function signature of a call into this API is then described by

he tuple: {Resource URL, HTTP Command, Accept Header}.

. The case for REST-based alignment

REST-based design is critical to Web 2.0 because it pro-
ides a unified way of organizing and accessing data over many
ifferent mediums, enabling mashups and structuring the Ajax-
ased applications we have today. From a design standpoint, this
pproach consists of two basic principles:

Each user-facing component of an application is modeled as
a resource.
Each resource in a web application is identified by and
resolved through a URL.

These two principles have subtle but far reaching effects that
ave greatly encouraged and enabled interoperability between
eb 2.0 sites. In a photo sharing application, for example, a

hoto is not tagged (verb) but rather a new tag (noun) resource
s created. Because a tag is modeled as a resource instead of an
ction, it can be described in a number of declarative formats and
xternalized to other sites. These resource-based principles also
ead to site APIs that are overlaid on top of the URL structure

or web users, creating predictable and, to a certain extent, self-
ocumenting APIs.

The REST design methodology also integrates well with the
esource paradigm of the Semantic Web. The Semantic Web

Input format Output format

HTTP Form Encoded Status 201 CREATED
None Determined by request headers
HTTP Form Encoded Status 200 OK
None Status 200 OK

http://www.semwebcentral.org/user
http://www.semwebcentral.org/user/ogrouch


ices a

u
o
R
t
c
t
t
t
a
a
d

4

R
m
w
t
s
h
y
S
t

J
i
a
[
f
o
W

4

t
p
h
t
a
r

4

w
v
s
m
t
t
O
t
B
w
p
v

a
w
a
e
c
w

4

t
R
t
g
d
b
a
s
a
i
f
h
a
v
t
v
S
m
T
o
p
“
t
p
a
a
R
a
h
o
S
i
R

4

v
e
E
c
fi
d
s

R. Battle, E. Benson / Web Semantics: Science, Serv

ses URIs as resource identifiers, so the URL-based identifiers
f REST fit naturally into its scheme. The Semantic Web, like
EST, also deals strictly with assertions describing objects and

heir state; no parallel exists for SOAP-like remote method invo-
ation. Finally, all common operations on the Semantic Web with
he exception of query – data fetch, insertion, and deletion – are
he fundamental operations in a REST-based system. It follows
hat REST-based web sites are an ideal carrier of semantic data
nd would even provide the additional benefit of resource resolv-
bility in human-readable HTML. The remainder of this paper
emonstrates strategies for making this a reality.

. Semantic bridge for web services

A great deal of data on the web is already available through
EST and SOAP-based access points but this data carries no
arkup to relate it to semantic concepts. Providing such markup
ould enable integration of these Web services with the Seman-

ic Web for data access and semantic query across multiple web
ites. In order for a semantic application to consume this data, it
as to know what the data means; it is not useful knowing that
ou can search for books via Amazon.com’s E-Commerce Web
ervice if the application consuming this data doesn’t know that

he service returns a book or even how a book is defined.
The Semantic Bridge for Web Services (SBWS) [21] is a

ava tool (part of BBN’s Asio [22] suite) we have developed to
ntegrate existing web services into the Semantic Web. It wraps
round a set of Web service operations described by a WSDL
6] or WADL [10] document to create a SPARQL [18] endpoint
or those services. SBWS can then analyze SPARQL SELECT
r CONSTRUCT queries and determine what combination of
eb service operations will provide an answer.

.1. Semantically describing web services

There are several frameworks that add semantic information
o Web services, such as OWL-S [15] and SAWSDL [8]. They
rovide details for each Web service parameter that describes
ow the value is derived from some ontology. With this combina-
ion of Web services and Semantic markup, SBWS can provide
standard way of communicating across Web 2.0 applications

egardless of how the applications themselves are defined.

.1.1. SOAP and WSDL
SBWS can be configured to query SOAP Web Services [4]

ith the combination of a WSDL document describing the ser-
ice mechanics and an OWL-S document describing the service
emantics of the WSDL components. The OWL-S document
aps each operation and message defined in the WSDL defini-

ion to an ontology. As most Web services return plain old XML,
here needs to be a conversion from this XML data to RDF. The
WL-S document contains either an inline XSLT document or

he URI of a document to use. This is important as the Semantic

ridge for Web Services can only use RDF data. A point of future
ork for SBWS is to integrate WSDL 2.0 [5] and SAWSDL to
rovide more flexibility for SBWS and WSDL based Web ser-
ices. Using OWL-S with SOAP based web services provides

m
z
a

nd Agents on the World Wide Web 6 (2008) 61–69 63

ccess to traditional web services. SOAP, however, does not fit
ell with the REST principles of Web 2.0; it has one endpoint

nd many actions on that endpoint, whereas REST provides an
ndpoint for each resource that will be acted upon. To more
losely align the Semantic Web with Web 2.0, SBWS needs to
ork with REST services.

.1.2. REST and WADL
While SOAP based Web services have a WSDL document

hat defines their operations, there is no standard equivalent for
EST services. Needing such a description language for SBWS

o function, we chose the Web Application Description Lan-
uage (WADL), from Sun Microsystems, as a specification for
escribing REST services. A WADL document is designed to
e a simple alternative to WSDL for use with XML/HTTP Web
pplications. It provides a description of Web applications in a
impler format than WSDL while also defining how to gener-
te the URI for each operation and defining the format of the
nput and output parameters. Since WADL was not designed
or Semantic Web interoperability, it does not provide place-
olders for semantic definitions of the operations, parameters,
nd results described within a WADL document. SBWS pro-
ides custom annotations to the WADL document [27], similar
o SAWSDL, that describes the semantics of the REST ser-
ice. There are three annotations for the WADL document that
BWS uses to add semantics to the input and output of a REST
ethod: modelReference, valueProperty, and schemaMapping.
he “modelReference” annotation tells SBWS the OWL class
f the parameter. The “valueProperty” tells SBWS which data
roperty in the model to use as a value for the parameter. The
schemaMapping” annotation gives SBWS an XSL transforma-
ion to apply to the model before setting it as the value of the
arameter, which can be used instead of the “valueProperty”
nnotation. For an output parameter, the “schemaMapping”
nnotation tells SBWS how to convert the XML result into
DF. Eventually this should be replaced by a set of standard
nnotations, perhaps call SAWADL. With these annotations in
and, SBWS is able to breakdown SPARQL queries into a series
f HTTP GET requests that satisfy a given SELECT or CON-
TRUCT query. WADL and the SBWS annotations provide the

ntegration that allows for the Semantic Web to utilize existing
EST services.

.2. Example usage with Amazon.com

Once SBWS has been configured for a particular web ser-
ice, it enables that service to be used as if it were a SPARQL
ndpoint. As an example, consider Amazon.com’s REST-based
-Commerce service [19] which allows developer to search its
atalog for product information. This service takes item query
elds as part of a search URL and returns an XML response
escribing a product. We would like to query this information
emantically and have it returned in RDF format.
The first step required is to define an ontology on which to
ap the data provided by the Web Service. The example Ama-

on.com ontology used by this paper is available at [29]. Next,
n annotated WADL document, available at [26] must be created



64 R. Battle, E. Benson / Web Semantics: Science, Services and Agents on the World Wide Web 6 (2008) 61–69

ontolo

t
e
e
A
s

A
A
I
N
t
i

i
t

s
a
a
t
i
v
t
n
p
s
t
v
w

4

i
s

o
w
c
p
d
W
b
S
S
t
u
f
t
a

W
a
e
t

a
I
o
c
o
p

w
a
d

Fig. 1. Conceptual mapping from

o align each element of the ontology with the request param-
ters and response structures of the Web Service. With these
lements in place, SBWS can be used as a SPARQL proxy for
mazon.com’s E-Commerce platform. Fig. 1 contains a repre-

entative depiction of our configuration.
This particular example of SBWS was configured to use

mazon.com’s E-Commerce REST service with definitions for
mazon.com’s ItemLookup and ItemSearch operations. The

temLookup service accepts an Amazon Standard Identification
umber (the ISBN of a book) in exchange for information, and

he ItemSearch service accepts the author and title values as
nput.

Using the described configuration, we can submit the follow-
ng query to SBWS to search for the title, price, and authors of
he book with ISBN “0470082801”:

SBWS will analyze all of the triples in the SPARQL query and
ee that the only triple that provides any data is the triple? item
mazon:Item.ASIN “0470082801”ˆˆxsd:integer. By looking at
ll of the semantically described operations in it’s configura-
ion, SBWS can see that the ItemLookup operation takes it’s
nput from the amazon:Item.ASIN property and that it provides
alues for the? price,? author, and? title variables. Since invoking
he ItemLookup operation solves the query, no further action is
ecessary. If SBWS encounters a query isn’t satisfied by the out-
ut of a single web service call, SBWS can chain together web
ervice calls into a hierarchy that can satisfy the query (assuming
hat the query can be satisfied by some combination of web ser-
ice calls). A more detailed example using the live Amazon.com
eb service is detailed below.

.3. Benefits of semantically enabled web services
There is a tremendous benefit that can be attained by integrat-
ng existing Web services with the Semantic Web. By adding
emantics to existing Web services, many disparate sets of data

b
m
q
t

gy to Amazon.com Web Service.

n the Web can be integrated with little work. Later in the paper,
e present an example using our distributed query architecture

alled the Semantic Query Decomposer (SQD) [14,20]. SQD
rovides a unified SPARQL endpoint over several individual
ata sources and automatically federates queries between them.
ith a component such as SQD, several instances of SBWS can

e configured to work together. For example, one instance of
BWS can be configured to use Amazon.com’s E-Commerce
ervice and another to use Facebook’s Web Service API. With

his system and a SPARQL SELECT or CONSTRUCT query,
sers can find out the price and ratings for each book in their
riends profiles. This allows SBWS to answer questions from
he entire set of configured Web services that could not be
nswered by an individual Web service. A popular theme in

eb 2.0 is combining different Web services together to form
“mashup.” Distributing a query across a set of semantically

nabled Web services as described above allows for the services
o be combined into a semantic “mashup.”

Even within the context of a single Web service and its oper-
tions, SBWS provides a benefit for consumers of Web services.
ts ability to analyze a query and chain together the output from
ne Web service invocation to the input of another Web service
all gives it the ability to consider the entire set of Web service
perations to answer questions that are not limited by the API
resented by the developers of the Web service.

The data that is presented by conventional REST and SOAP
eb services is more accessible when it is semantically enabled

nd integrated into SBWS. By using SBWS with semantically
escribed Web services in this way, it enables SPARQL to

ecome the standard language for querying Web services and
akes it easy to combine several Semantic Web services and

uery them as if they were a single semantic mashup. More tradi-
ional Web 2.0 mashup’s rely heavily on programming directly to



ices a

t
t

5

S
t
a
t
R
S
t
a
d
i

o
m
s
r
a
t
t
p
H
w
t

5

5

W
i
d
t
r
t
p
v
s
t

r
i
r
a
r

p
e
c
v
a
i
w
n
s
e
s
t
o
b

5

e
i
q
t
s
t
a
a
b
s

a
s
k
i
a
u
e
a

R. Battle, E. Benson / Web Semantics: Science, Serv

he Web service API. SBWS (in conjunction with SQD) abstracts
his away by presenting a single SPARQL interface.

. Semantic REST

Semantic REST is a different approach to Web 2.0 and
emantic Web integration that merges existing RDF opera-

ions with REST access points. While SBWS provides a way to
dapt existing REST and SOAP-based Web services for seman-
ic query, Semantic REST provides a new implementation for
EST-based web sites to integrate fully into the Semantic Web.
emantic REST takes the existing set of standard REST opera-

ions and defines constraints and patterns for use with SPARQL
nd RDF. The result is an ability to query, retrieve, modify,
elete, and add RDF data directly from the endpoints already
n use in a REST-based web application.

Using this model, existing Semantic Web applications that
perate over SPARQL endpoints may continue to perform nor-
ally, but new functionality is possible through the expanded

et of operations the REST approach provides, and semantic
esources double as web-resolvable pages. The Semantic REST
pproach is defined in two parts. First we describe the charac-
eristics of Semantic REST requests, including a data constraint
o enforce the REST mindset and an extended SPARQL syntax
roposed by Hewlett Packard’s Jena team [25]. Next we map
TTP REST operations onto the semantic world, describing
hat each combination of endpoint and HTTP command maps

o in terms of SPARQL and RDF.

.1. Request characteristics

.1.1. Graph constraints
One of the fundamental principles behind REST as used in

eb 2.0 is the idea of using an URL as a resolvable resource
dentifier. All operations about a particular resource can be han-
led through requests to its resolvable identifier. This also means
hat all operations to a resource’s URL should be concerning that
esource alone. Because RDF provides a descriptive flexibility
hat HTML Form-encoded data does not, constraints must be
laced upon the data sent to a Semantic REST endpoint to pre-
ent arbitrary statements and queries from being made. Doing
o ensures that all RDF data sent as part of a request is relevant
o the resource implied by the request endpoint.
nd Agents on the World Wide Web 6 (2008) 61–69 65

To place this constraint, Semantic REST requires that all
equests containing an RDF graph reference the endpoint URI
n every disconnected sub-graph included in the request. If a
equest contains a graph that does not include the endpoint as
n RDF node, then the request is rejected by the server and a
esponse of HTTP 406 Not Acceptable is returned.

Additionally, Semantic REST operations that carry a graph
ayload that is to modify the graph on the server may not refer-
nce resources on that server that do not exist (thereby implicitly
reating them). It is up to the server to verify that each indi-
idual resource within its resolvable namespace referenced in
n INSERT or UPDATE request is a pre-existing resource in
ts local graph-store. Note that this rule means that the open
orld hypothesis does not apply to resources within the local
amespace that a Semantic REST server controls; the server
hould be able to report whether they exist or not. Finally, to
nsure that all operations are graph-related and can thus be
ubjected to these constraints, Semantic REST only supports
he SELECT, CONSTRUCT, MODIFY, INSERT, and DELETE
perators of SPARQL and SPARQL/Update (described
elow).

.1.2. Extended SPARQL syntax
A standard for the insert, update, and delete operations nec-

ssary for any data system has not yet emerged for RDF, but
t is reasonable to expect that SPARQL, as a proposed RDF
uery language, will be a medium for these operations when
hey are standardized. As such, Semantic Rest uses an exten-
ion of SPARQL called SPARQL/Update defined by the Jena
eam at Hewlett-Packard. This extension to SPARQL adds two
dditional commands, INSERT and DELETE, as well as a trans-
ctional operator MODIFY that allows deletion and insertion to
e chained together to create the equivalent of an SQL update
tatement.

SPARQL/Update draws on the flexible syntax of SPARQL to
llow variables in the data for INSERT and DELETE commands
o that one command may be issued for many resources in the
nowledge base. This leads to INSERT and DELETE queries
mmediately familiar to anyone who has used SPARQL, such
s the example in Listing 2, which deletes all statements about
sers whose subscription expires before 1 January 2007. The
ndpoint of this example request is the class-level endpoint for
User, http://example.org/somewebsite/User.

http://example.org/somewebsite/User


6 ices a

5

f
A
i
b
o
n
s
i
k
S

5

b
a
p
a
a

e
r
a
t
r
i
p
t
r

f
t

p
T
i
r
e
a
c
t
i
r

a
a
m
a
r
t
t

t
n
c
m
r
h
i
l
T

T
C

O

L

Q
C
I
R

T
R

O

R
I
R

6 R. Battle, E. Benson / Web Semantics: Science, Serv

.1.3. Specifying semantic REST
As the Semantic REST operations are designed to be per-

ormed over the existing REST endpoints of a web site, HTTP
ccept headers must be used to specify that a particular request

s a Semantic REST one. In all of the operations detailed
elow, the response type will either be application/rdf+xml
r application/sparql-results+xml. Clients should know by the
ature of the request which type to expect in response, but may
imply include both accept types if they wish to avoid hav-
ng to alternate between two header templates based on this
nowledge. Either of the two accept types in Listing 3 specify a
emantic REST operation.

.2. REST syntax

The central concept behind Semantic REST is a mapping
etween the commonly accepted HTTP REST operations and
ctions appropriate for the Semantic Web. We focus this mapping
rimarily on SPARQL and its proposed extension as it represents
n existing standard on which many Semantic Web applications
re already based.

Semantic REST operations can occur at two types of
ndpoints: class-level and resource-level. Class-level endpoints
epresent an entire class of resources on the remote server, such
s all users. These endpoints provide access to broad queries
hat affect or return a number of resources of that type, as well as
esource creation. The URI of each resource in Semantic REST
s also a resolvable endpoint. These resource-level endpoints
rovide information about the resource in RDF as well as
he ability to add, remove, or modify information about that

esource.

The operations in Table 2 describe the class-level endpoint
unctionality that may be used for operations concerning a par-
icular resource type.

i
s
t

able 2
lass-level endpoints of semantic REST

peration HTTP command Request data format S

ist GET None n

uery GET SPARQL S
reate POST None n

nsert PUT SPARQL/Update IN
emove DELETE SPARQL/Update D

able 3
esource-level endpoints of semantic REST

peration HTTP command Request data form

ead GET Empty
nsert PUT SPARQL/Update
emove DELETE SPARQL/Update
nd Agents on the World Wide Web 6 (2008) 61–69

Resource creation and statement insertion are kept com-
letely separate to remove ambiguity from the creation request.
he HTTP Post that creates a new resource carries no payload –

t simply causes the server to generate a new resource handle and
eturn it to the client. The resource handle uses the class-level
ndpoint as its namespace, so a POST to/users would result in
new resource with a URI of the form/users/resource id being

reated. On the server side, resource creation causes a single
riple to be inserted into the graph stating that thex new resource
s of the class type defined by the endpoint used to create that
esource.

In this early version of Semantic REST, the handle cre-
ted by the server is automatically generated, so it is like an
uto-incrementing integer in the style of database row IDs. A
ethod for specifying a custom handle (such as a ‘ebenson’) is
desirable addition for future versions of Semantic REST. The

equirement on the server to generate this handle also indicates
hat some indexing mechanism must sit alongside the triple-store
o keep track of existing handles and generate new unique ones.

As an example, an HTTP POST might be sent to
he http://www.semwebcentral.org/user endpoint to create a
ew User resource on SemWebCentral. The server would
reate a unique resource handle (user:1234), insert a state-
ent declaring its type (user:1234 a:User), and finally

espond with the URI representing that new resource,
ttp://www.semwebcentral.org/user/1234. The client could then
nteract with this new resource-level endpoint using the fol-
owing resource-level Semantic REST conventions, defined in
able 3.
The Insert and Remove operations operate with the behav-
or and restrictions specified above in this paper, and the Read
tatement returns all triples for which the URI endpoint is either
he subject or object.

PARQL command Response

/a SPARQL Select result of all resources
of the type specified by the URL

ELECT or CONSTRUCT Query Results
/a Status 201 CREATED

SERT Status 200 OK
ELETE or MODIFY Status 200 OK

at SPARQL command Response

n/a RDF/XML
INSERT Status 200 OK
DELETE or MODIFY Status 200 OK

http://www.semwebcentral.org/user
http://www.semwebcentral.org/user/1234


ices a

r
w
t
h

t
p
i
O
h
u

a
o
r
t
t
f
i
T
r
d
U

c
f
i
(
t
W
t

t
u
n
o

6

d
e

(

(

(

b
s
b
o

e

R. Battle, E. Benson / Web Semantics: Science, Serv

Continuing the example of User 1234, a client could use the
esource-level Semantic REST conventions to add information
ith the HTTP Put operation in Listing 4. The endpoint for

his request would be the URI of the new resource just created,
ttp://www.semwebcentral.org/user/1234.

The server validates that the one graph contained in
his request references the resource defined by the end-
oint serving the request, and then adds the new triples to
ts triple-store. It replies to this request with a Status 200
K response indicating that the graph concerning resource
ttp://www.semwebcentral.org/user/1234 had successfully been
pdated.

Several themes are apparent in this organization of oper-
tions, and while information security is outside the scope
f this paper, this organization is chosen with future secu-
ity enhancements in mind. The class-level endpoints provide
he generalized administrative operations for the resource type:
he ability to create new instances and the ability to per-
orm sweeping queries, insertions, and deletions (modification
s accomplished by chaining an insertion after a deletion).
he resource-level endpoints offer capabilities with a nar-

ower focus; they provide only the ability to read, insert, and
elete statements about the particular resource implied by the
RL.
Integrating the class-level and resource-level Semantic REST

apability into an existing REST-based web site is a straight-
orward task, as these sites already contain code that routes
ncoming HTTP requests based on the desired response format

HTML, XML, etc). Once Semantic REST capability is added
o a site, it becomes a full-featured member of the Semantic

eb while maintaining its existing strengths as a web site. With
he widespread use of this functionality, Web 2.0 sites such as

m
a
t
t

Fig. 2. System diagram
nd Agents on the World Wide Web 6 (2008) 61–69 67

he photo sharing site Flickr could benefit from better semantic
nderstanding of its user data, and the Semantic Web commu-
ity would benefit immensely from the tie-in to the vast wealth
f information available on the web.

. Example: distributed, semantic query over Web 2.0

To test the ideas presented in this paper, we performed a
istributed semantic query across three separate data sources,
ach employing a different method of data exposure:

1) A DAML DB-based [24] RDF triple-store containing mock
employee data from a payroll system connected to tradi-
tional SPARQL endpoint.

2) A Semantic REST compliant replica of SemWebCen-
tral.org.

3) Amazon.com’s live REST-based service that allows users to
search its database but not in RDF format.

We created a SBWS wrapper for Amazon.com’s live REST-
ased service so that it could be treated as a semantic RDF data
ource. This wrapper contained the annotations necessary to map
ook and author data from Amazon’s REST service to elements
f the publication ontology at [25].

Performing a distributed semantic query is not a trivial task
ven when operating strictly within a Semantic Web environ-

ent. We employed the Semantic Query Decomposer (SQD) to

ssist us with this operation. SQD wraps around multiple seman-
ic data sources with their own data source ontology defining
he concepts in the data source and provides a unified SPARQL

of demonstration.

http://www.semwebcentral.org/user/1234
http://www.semwebcentral.org/user/1234


68 R. Battle, E. Benson / Web Semantics: Science, Services and Agents on the World Wide Web 6 (2008) 61–69

Table 4
Distributed, semantic query results using SBWS and Semantic REST

?Name ?Position ?Title

Dana Moore Division Scientist Jabber Developer’s Handbook
D siona
E siona
D o-Pee

a
o
d
c
D
m
F
q

t
u
q
d

p
e
h
i
d
A

t
p
b
o
a
e
A
t
T

i
W
a
a

s
t
e
a

7

l
e
O
f
i
b
i
m
a
a
i
h

w
e
t
e
f
m
F
c
t

ana Moore Division Scientist Profes
dward Benson Software Developer Profes
ana Moore Division Scientist Peer-t

ccess point that accepts queries targeted for a provided domain
ntologythat defines the concepts that the query refers to. SQD
ecomposes these queries into workflows of sub-queries spe-
ific to each configured data source and its particular ontology.
ecomposition decisions are based on SWRL [12] rules that
ap data source ontologies into the master domain ontology.
inally, SQD merges its sub-query results and provides a unified
uery response in the language of the domain ontology.

Fig. 2 depicts the overall system architecture we used for our
est. This architecture allows us to send SPARQL queries to SQD
sing a single domain ontology (available at [28]) and have those
ueries automatically distributed across the three data sources
escribed above.

With SQD configured for our three test data sources, we
osed our SPARQL query: who are all of the BBN employ-
es who are also Semantic Web developers, and what books
ave they authored? This query relies on our mock employment
nformation from the SPARQL endpoint, project membership
ata from SemWebCentral, and authorship information from
mazon.com’s REST service.

Performing the query causes SQD to divide work among the
hree services based on our configuration file and ontology map-
ings. Mock employee data is fetched from an endpoint powered
y the Joseki SPARQL server [23]. The SemWebCentral devel-
per information is stored in a mock version of SemWebCentral
nd is accessible for query from the class-level Semantic REST
ndpoint for users. Finally, the book information is fetched from
mazon.com’s live REST service through an SBWS proxy. All

ogether, the information that returns is reproduced in part in
able 4.

This success of this query clearly demonstrates the viabil-

ty and potential of integration between Web 2.0 and Semantic

eb. It took two data sources from the Web 2.0 community,
n open-source development site and Amazon’s REST service,
nd it seamlessly merged them with a strictly Semantic Web data

d
[

d

l Rich Internet Applications: AJAX and Beyond (Programmer to Programmer)
l Rich Internet Applications: AJAX and Beyond (Programmer to Programmer)
r: Building Secure, Scalable, and Manageable Networks

ource for a unified query. Further it made use of two integra-
ion methods: the client-side SBWS approach for Amazon.com’s
xisting REST-based service and the server-side Semantic REST
pproach for the mock version of SemWebCentral.

. Related work

The Semantic Bridge for Web Services functions somewhat
ike a semantic web service matchmaker. There have been sev-
ral service matchmakers that have been developed such as
WLS-MX [13] and the OWL-S IDE [17]. These, however,

ocus on more generic service matchmaking than SBWS. SBWS
s more of a query engine using a Web service as a knowledge
ase than a discovery tool. SBWS uses signature matching as
t extracts concepts and data from the query to match and ulti-

ately invoke a set of Web service operations to provide an
nswer, while the more conventional service matchmakers take
request of desired inputs and outputs and provide a correspond-

ng service using signature matching, reasoning, or some other
ybrid mechanism to match the service.

Past approaches to the topic of merging the semantic web
ith the existing world-wide web have often focused on the

xtraction of semantic content from HTML-based pages rather
han the coexistence of HTML and RDF services as two differ-
nt access mediums for the same data. MIT’s Piggy Bank plugin
or Firefox uses pre-defined “scrapers” to extract semantic infor-
ation out of the DOM structures of popular web sites such as
lickr and Amazon.com, for example [7]. Other examples use a
ombination of user-guided training and tree-based algorithms
o learn how to scrape data from a site that presents multiple

ata objects of the same type with the same basic DOM layout
9][solvent].

Microformats [1] are a way for web scrapers and HTML
evelopers to meet in the middle. Developers embed lightweight



ices a

s
(
d
H
t
a
c
i
f

8

o
b
W
w
e
t
o

t
i
W
f
t
c
w

a
w
b
a
a
t
w
t
T
a
S
s
S

A

F
w
a

R

[

[

[

[

[

[

[

[

[

[
[

[

[
[
[

[

[

[

[
2007, available: http://semanticrest.org/restful-rdf/paper-example/domain-
R. Battle, E. Benson / Web Semantics: Science, Serv

emantic markup into the class attribute of HTML elements
generally used for CSS styling). These markers provide a stan-
ard context through which to interpret the contents of the
TML tag. Semantic REST offers a different approach than

he above tools because it focuses on the co-existence of HTML
nd RDF rather than a method for extracting RDF from HTML
ontent. This different approach attempts to retain the capabil-
ties and flexibility that make RDF and HTML attractive data
ormats in the first place.

. Conclusion and future work

The returns that will come from integrating the data modeling
f the Semantic Web with the user participation of Web 2.0 will
e far greater than either of the two component parts. Semantic
eb users will be able to perform queries and analysis across a
ealth of live data from various web sites that they likely use

very day. Web applications will also benefit from the ability
o use semantic mapping to incorporate external data into their
wn services.

This paper presented the case for integration between these
wo worlds and the reasons why Representational State Transfer
s an ideal common ground on which to perform that integration.

e then provided two alternative and complimentary strategies
or performing this REST-based integration. Together these two
echniques provide a way to update existing web sites and to
onstruct new hybrid endpoints, as shown by our experiments
ith a sample query.
Several real-world issues are not addressed with this work

nd must inevitably be solved before these technologies gain
idespread use. Authentication and authorization is absent from
oth Semantic REST and SBWS as presented here. A web site or
data repository must control both who can access information
nd what type of information that user can access. Addressing
hese issues is a significant task and should be the focus of future
ork so that a SemWebCentral user could not make the assertion

hat, for example, they were of rdf:type semwebcentral:Admin.
he Semantic REST model outlined here also uses a suggested
ddition to SPARQL that has not yet been added to the proposed
PARQL standard. For the full breadth of operations neces-
ary for Semantic REST to serve as a complete data endpoint,
PARQL/Update or some equivalent must be officially adopted.

cknowledgements

We sincerely thank and acknowledge Doug Reid and Matt
isher for their review of this work, Dave Kolas for his assistance
ith SQD and our test configuration, and Troy Self for his ideas

nd help in experimenting with semwebcentral.org.

eferences
[1] J. Allsopp, Microformats: Empowering Your Markup for Web 2.0, Friends
of ED, Berkeley, CA, 2007.

[2] R.T. Fielding, R.N. Taylor, Principled design of the modern web architec-
ture, ACM Trans. Internet Technol. (TOIT) 2 (2) (2002) 115–150.

[

nd Agents on the World Wide Web 6 (2008) 61–69 69

[3] D. Beckett (Ed.), RDF/XML Syntax Specification (Revised), W3C Rec-
ommendation, February 10, 2004.

[4] D. Box, D. Ehnebuske, G. Kakivaya, et al. Simple Object Access Protocol
(SOAP) 1.1, W3C Note, May 8, 2000.

[5] R. Chinnici, J. Moreau, A. Ryman, S. Weerawarana (Eds.), Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C
Proposed recommendation, May 23, 2007.

[6] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services
Description Language (WSDL), W3C Note, March 15, 2001.

[7] H. David, M. Stefano, K. David, Piggy Bank: experience the semantic web
inside your web browser, in: Proceedings of the International Semantic
Web Conference (ISWC), 2005.

[8] J. Farrel, L. Holger (Eds.), Semantic Annotations for WSDL and XML
Schema, W3C Working Draft, April 10, 2007.

[9] H. Geng, Q. Gao, J. Pan, Extracting content for news web pages
based on DOM, IJCSNS Int. J. Comput. Sci. Network Security 7 (2)
(2007).

10] M. Hadley, Web Application Description Language (WADL), November
9, 2006, available: http://wadl.dev.java.net/wadl20061109.pdf.

11] D. Heinemeier Hansson, World of Resources, RailsConf 2006 Keynote
Presentation.

12] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean,
SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
W3C Member Submission, May 21, 2004.

13] M. Klusch, F. Benedikt, K. Sycara, Automated semantic web service
discovery with OWLS-MX, in: Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems,
2006.

14] D. Kolas, Query Rewriting for Semantic Web Information Integra-
tion, in: Proceedings of the Information Integration on the Web
workshop, Twenty-Second AAAI Conference on Artificial Intelligence,
2007.

15] D. Martin, A. Ankolekar, M. Burstein, OWL-S 1.1 Release, November
2004, available: http://www.daml.org/services/owl-s/.

16] L. McGuinness, L. Deborah, F. van Harmelen (Eds.), OWL Web Ontology
Language, W3C Recommendation, February 10, 2004.

17] N. Srinivasan, M. Paolucci, K. Sycara, Semantic Web Service Discov-
ery in the OWL-S IDE, in: Proceedings of the 39th Hawaii International
Conference on System Sciences, 2006.

18] E. Prud’hommeaux, A. Seaborne (Eds.), SPARQL Query Language for
RDF, W3C Working Draft, March 26, 2007.

19] Amazon Web Services, Amazon.com, available: http://aws.amazon.com.
20] Asio Distributed Semantic Query, BBN Technologies, available:

http://asio.bbn.com/sqd.html.
21] Asio Semantic Bridge for Web Services, BBN Technologies, available:

http://asio.bbn.com/sbws.html.
22] Asio Tool Suite, BBN Technologies, available: http://asio.bbn.com/.
23] Joseki: A SPARQL Server for Jena, available: http://www.joseki.org/.
24] M. Dean, P. Neves, DAML DB, September 2001, available:

http://www.daml.org/2001/09/damldb/.
25] A. Seaborne, G. Manjunath, SPARQL/Update: a language for

updating RDF graphs, Version 2, April 24, 2007, available:
http://jena.hpl.hp.com/∼afs/SPARQL-Update.html.

26] R. Battle, Semantic Web + Web 2.0 Example Amazon WADL,
May 20, 2007, available: http://semanticrest.org/restful-rdf/paper-
example/amazon.wadl.

27] R. Battle, Semantic Web + Web 2.0 WADL Annotations, August 31,
2007, available: http://semanticrest.org/restful-rdf/paper-example/sbws-
wadl.xsd.

28] E. Benson, Semantic Web + Web 2.0 Example Domain Ontology, May 20,
ontology.
29] E. Benson, R. Battle, Semantic Web + Web 2.0 Example Amazon

Ontology, May 20, 2007, available: http://semanticrest.org/restful-rdf/
paper-example/amazon-ontology.

http://wadl.dev.java.net/wadl20061109.pdf
http://www.daml.org/services/owl-s/
http://aws.amazon.com/
http://asio.bbn.com/sqd.html
http://asio.bbn.com/sbws.html
http://asio.bbn.com/
http://www.joseki.org/
http://www.daml.org/2001/09/damldb/
http://jena.hpl.hp.com/~afs/SPARQL-Update.html
http://semanticrest.org/restful-rdf/paper-example/amazon.wadl
http://semanticrest.org/restful-rdf/paper-example/sbws-wadl.xsd
http://semanticrest.org/restful-rdf/paper-example/domain-ontology
http://semanticrest.org/restful-rdf/paper-example/amazon-ontology
http://semanticrest.org/restful-rdf/paper-example/amazon-ontology

	Bridging the semantic Web and Web 2.0 with Representational State Transfer (REST)
	Introduction
	REST-based Web design
	The case for REST-based alignment
	Semantic bridge for web services
	Semantically describing web services
	SOAP and WSDL
	REST and WADL

	Example usage with Amazon.com
	Benefits of semantically enabled web services

	Semantic REST
	Request characteristics
	Graph constraints
	Extended SPARQL syntax
	Specifying semantic REST

	REST syntax

	Example: distributed, semantic query over Web 2.0
	Related work
	Conclusion and future work
	Acknowledgements
	References


