

Abstract—The dynamic, distributed, and autonomous
nature of agent-based applications make knowledge
extraction and distributed processing a complicated task.
This paper presents Fido, a programming model and
framework implementation that simplifies this task by
concealing the details of the agent society under a fixed
processing pipeline. Fido developers are then free to focus
on the business logic of the application with very little
overhead and additionally benefit from multiresolutional
result formation, distributed result caching, and other
features of the overall framework.

1. INTRODUCTION
Agent architectures present a powerful means to design and
construct distributed applications, but their dynamic,
distributed, and autonomous nature create a number of
problems when interacting with the system or subsets of the
system. As a result, existing distributed processing
frameworks generally require some centralized
foreknowledge of the component topology, such as service
capability or data location, to handle complex question or
task. This centralized control violates the fundamental agent
paradigm and limits a society’s inherent scalability,
parallelism, and dynamism.

This paper presents the Fido framework, a package of
plugins for the Cognitive Agent Architecture (Cougaar) [1]
that addresses the problems of dissemination and collection
from a local, agent-level perspective. Fido was created out of
the need to aggregate various types of information across a
large, distributed agent-based logistics application. Agents in
this particular application were allowed to form dynamic
command relationships, stored and maintained locally, so no
assumptions about agent topology could be known by the
user posing the query.

Rather than address the specific problem that faced this

particular application, we designed and implemented a
framework that attempts to address some of the challenges in
agent computing that made this task so complex. Fido is an
asynchronous request-response framework that conceals the
particulars of a Cougaar agent society by allowing users to
pick any one agent as an entry-point into the society and deal
only with that agent. By using a small set of classes that
allow tailored business logic over a fixed distributed
processing pipeline, users can form complex distributed
workflows without ever dealing with the details of the agent
society itself.

The remainder of this section discusses relevant background
information, followed by an introduction to the Cognitive
Agent Architecture. Section 2 provides a detailed look at
Fido’s design and benefits. Section 3 describes Fido’s plugin
architecture, and Section 4 concludes with examples of
Fido’s real world use and future areas of improvement.

Background

Grid-based approaches to distributed processing, such as the
Globus Toolkit, commonly separate and define grid
members based on their technical role within the grid [2].
The Open Grid Services Architecture defines notions such as
service factories, registries, and hosting environments that
create an environment in which batch processing is a
commodity easily scheduled and moved from machine to
machine [3]. In these environments, locating resources is a
well-defined task, as service discovery services and data
indexing services are available to transform a workflow
specification into a set of resource endpoints [4] [5].

Google's MapReduce [6] framework is a particularly
interesting grid-like approach to data processing. Rather than
offering service directories of pre-made or commercial
processing tools, MapReduce provides a fixed pipeline into
which users must plug in their own task implementations
described in a variety of supported languages. By imposing
rigid restrictions upon the way in which workflows can be
described, MapReduce is able to hide the fact that it operates
within a distributed environment, allowing developers with
little distributed programming background to write
processing tasks that run in a large distributed environment.

A Framework for Multiresolutional Knowledge
Dissemination and Collection in Dynamic Agent Societies

Edward Benson, Jeffrey Berliner, and Marshall Brinn
BBN Technologies, Cambridge, MA

{ebenson, berliner, mbrinn}@bbn.com

Cougaar

The Cognitive Agent Architecture (Cougaar) is a scalable,
distributed, and open source, multi-agent architecture
developed over an eight-year period by BBN Technologies
[7]. Cougaar supports agent environments ranging from
embedded applications to globe-spanning agent societies.

The complete network of Cougaar agents in a distributed
application is called a society. Each agent maintains
relationships with other agents, belongs to groups of other
agents with similar interest known as communities, and is
hosted on a physical node. Using a flexible configuration
scheme, developers construct their distributed application on
top of the society as a set of components that provide the
agents, communities, and nodes with interests, capabilities,
and behaviors [8].

Plugins are special components that are added at the agent-
level to contribute a piece of business logic. Plugins have
access to a number of services hosted on each agent that
provide capabilities such as society-wide time
synchronization and generation of unique object IDs. The
Blackboard Service serves as the agent's persistence
mechanism and provides publish-subscribe capabilities that
activate plugins based on interests it has registered with that
service. Interest is registered using a Unary Predicate pattern
that matches against objects that have been added, deleted,
or modified on the Blackboard [8], [9].

Cougaar agents are autonomous, but are able to
communicate over a variety of mediums using Cougaar’s
Message Transport Service (MTS). Agents can also form
dynamic role-based relationships that often come in the form
of a producer-consumer or superior-subordinate pair.

2. FIDO DESIGN
Fido is a framework for intelligently distributing small
pieces of code for distributed execution and reporting. In the
spirit of Google’s MapReduce framework [6], Fido is
intended to provide developers with a great deal of
flexibility by simplifying the problem of distributed agent
processing down to a single predictable pattern of
operations. In Fido, this pattern is: Request, Assess, Expand,
Combine, Report.

When a Fido-enabled agent receives a Fido request, it first
assesses the request to determine if it can answer it
immediately using cached results or its own capabilities. If
not, it dynamically generates a list of agents needed to help
answer the request and then expands the request into sub-
requests destined for each agent in that list. Upon receiving
the partial results from each agent, it combines them into an
aggregated result, performing work and possibly adding its
own piece as well. Finally, it reports the full or partial result
by replying to its requestor.

Figure 1 - Fido Interaction Sequence

Users interact with this pipeline by implementing or
configuring objects that control the decisions made at each
step. From the developer’s perspective, using Fido only
requires the direct use of four objects: the Request, the
Expander, the Worker, and the Result. Requests initiate Fido
work, maintain process configuration, and carry the
Expander and Worker as payload. Expanders assess the
request in the context of its owning agent and generate a list
of other agents, if any, that should be incorporated into the
workflow. Workers contain the code that collects data,
performs work, and/or distributes information on each agent.
Finally, Results contain the output (if any) of the Fido work
that was performed and contain the business logic that
specifies how to combine themselves with incoming partial
results. Fido’s underlying framework takes care of
orchestrating and executing all of the interactions involved.
Figure 2 depicts the model from Figure 1 from the
perspective of object interaction.

To permit maximum flexibility within this fixed pipeline, all
objects that implement a Fido workflow are described in
regular Java code rather than a query or business process
language. The Java-based approach allows Expanders and
Workers full access to the Cougaar infrastructure, and it has
the additional benefit of allowing Fido to be not only a query
framework, but also a framework for distributed processing
and society-wide information dissemination.

Figure 2 - Core Fido Objects

The Request object comes packaged with the framework,
and in practice a project might re-use two or three

application-specific Expanders. The effort required to use
Fido then largely consists of implementing a Worker and its
corresponding Result object. Once these two interfaces are
implemented, users can disseminate and query information
across an agent society with no knowledge of its topology.

Fido’s object design and workflow process afford it several
attractive attributes, including:

Parallel, Asynchronous, Distributed WorkflowAs Fido
Requests are expanded, agents perform work in parallel and
respond to their requests asynchronously. Fido’s
infrastructure further allows agents to participate in multiple
workflows simultaneously and, if necessary, to participate
many times within the same workflow.

Multiresolutional ResultsThe manner in which Fido
results are assembled leave a trail of partial results chained
across the agent society. Each agent that becomes a part of a
Fido workflow generates its own partial result. In addition,
each expanding agent maintains a partially aggregated result
that incorporates all partial results “downstream” of that
agent.

The result reporting and storage mechanism is therefore both
distributed and multiresolutional. In agent societies
dispersed across physically disparate locations, this presents
a result storage process that is survivable in adverse
environments. This redundancy helps to ensure that some
result is available under all conditions, even if that result is
not the most complete possible.

This design allows users to “drill down” into details of a
result for more information as needed. A Fido-based result
in an interstate highway monitoring society might provide
final results on a per-state basis. Seeing a problem in
Virginia, a user could drill down into the Virginia partial
result by visiting the appropriate agent, without the need to
re-query the society. The Virginia-level result would show
that the source of the problem status was coming from
Northern Virginia. Further drilldown into the region-specific
agent would show actual traffic backup data from I-495.

The stored chain of aggregated and partial results throughout
the society thus provides several ways to look at the output
of a Fido workflow. Different portions of the results leading
up to the final result vary both in their completeness and in
their scope, so all are potentially valuable pieces of
information. Figure 3 depicts the quality of result improving
as combination occurs throughout a society.

Figure 3 - Fido Result Flow

Topology-Independent ExecutionBecause expansion
decisions are made locally on each agent during the
execution of a Fido workflow, the user initiating the request
requires no knowledge of the particular agents and
relationships involved in answering the request. Choosing
between which Expander implementation to use or writing a
new Expander is the closest users come to making binding
and scheduling decisions.

Dynamic, Adaptable WorkflowsA fourth benefit to the
organic manner in which request expansion unfolds is its
ability to respond to societal changes in real-time. Expansion
decisions are made based off of the real time relationships,
capabilities, load, and availability (among other things) of
agents known to the expanding agent. If these characteristics
change after a Fido workflow has been initiated, the
Expander will simply use the most current information
available.

The remainder of this section will provide more detail about
use and operation of the four key objects from a user’s
perspective of Fido. Section 3, Fido Architecture, will then
discuss the plugin architecture that manages Fido processes.

Request

Fido Request objects are used to initiate any work done by
the framework. Fido Requests contain a Worker instance to
perform the distributed work, an Expander to route the
process throughout the society, and a number of settings that
modify the behavior of the framework's handling of the
request.

Some of the most important options included in the Fido
request relate to caching and partial result handling. Fido
caches past results based on a request fingerprinting
mechanism within the framework. If a new request matches
the fingerprint stored on a cached result and that result
reports that it is not stale, Fido can return the cached result
and avoid a possibly long and involved work process.
Options on the request object control whether cached results

can be used, how thoroughly any newly generated results are
cached, and how cached results are cleaned up. Overlapping
with the cache features, the Request object also provides
various options that dictate the way in which multi-
resolutional partial results are maintained throughout the
society.

Result

Result objects are the output of the Worker and represent
either a particular agent’s results from the work process or
the combination of several agents’ results. Workers and
Results come in pairs, each Worker implementation is
expected to have a corresponding Result implementation that
it knows how to generate.

The Result interface only contains two requirements that the
user must implement (other maintance-related requirements
are handled by an abstract base class). A Result must know
how to incorporate a child partial result of the same type
with the combine(Result result) method, and it must
be able to evaluate itself to determine whether or not its
contents are stale for the purpose of caching.

While not all Fido tasks are result-producing queries, Result
objects are not optional. Even if the work being distributed
does not produce any output, some lightweight empty result
must be implemented. In these cases it is common to use the
Result as a mechanism for logging the names of the agents
on which the Worker process was executed.

Results are combined at each junction of Expansion within
the workflow. Along a particular path of Expansion, result
combination occurs as the outermost Expander objects
determine no more expansion is necessary. Partial results
then follow the reverse path of expansion, combining along
the way for increasingly more complete aggregated results.

Result Types

Fido contains five classifications of Results, reflecting the
two ways in which a Result may be produced and the two
ways in which a Result contributes to the overall Fido task,
in addition to a special case. Results that require no
expansion are called Elemental Results. These results can be
provided immediately upon request during the Assess step of
the pipeline by invoking the Worker object. Results that
require the incorporation of input from other agents are
called Aggregated Results.

The decision of whether a Result must be Elemental or
Aggregated is not intrinsic to a particular request, result, or
expansion, alone, but is a product of the condition of the
society at the time of execution. The same request on the
same agent might yield an Elemental Result or an
Aggregated Result at different times due to changes in agent

relationships, capabilities, knowledge, and topology.

A special case of Result is the “Contributing Result.” This is
the individual contribution of an agent at a point of
expansion within the workflow. When the agent collects and
combines expansion results, it adds its Contributing Result
into the Aggregated Result. Table 1 summarizes the various
result configurations.

Table 1 - Result Types

 Partial Final

Elemental Partial-Elemental Final-Elemental

Aggregated Partial-Aggregated Final-Aggregated

 Special Case: Contributing

Results are deemed Partial or Final based on their
contribution to the overall Fido Task. Only one Final Result
exists per Fido Request; all other results output by the task
are Partial Results. The way in which each of these five
results is preserved during and after a Fido workflow is
controlled by options set on the Request object.

Expander

The Expander is the key design component that enables
localized decision-making in Fido's request dissemination
process. Its job is to determine which targets, if any, are the
next steps in the unfolding work process.

Expansion is dynamic, so events that occur after the start of
a Fido process can alter the manner in which problem-
solving unfolds. As workflow is expanded throughout the
agent society, the problem-solving process forms an
organically grown directional graph outward from the
initiating agent until the outermost Expanders independently
determine no further expansion is necessary. As each path of
expansion reaches an end, the process reverses direction as
each agent aggregates the responses it received, makes its
own response contribution, and responds to its requester.

The Expander interface requires just two variations of the
method expand(...) for two different modes of execution
that Fido supports. This stateless method accepts the agent's
Service Broker, which provides access to any of the agent’s
local services (such as the Blackboard Service or Alarm
Service), and it returns a list of agent addresses representing
any Expansion that is required before a result can be
generated. This output is one of the key deciding factors in
the Assess step of the pipeline that determines if a Request
can be handled immediately or requires more work.

Fido makes no restrictions on the manner in which tasks

expand. This leaves the possibilities of Expander
implementation entirely open to the developer but introduces
the possibility of infinite cycles within workflow expansion.
While cycles in a controlled manner are not necessarily bad,
future versions of Fido will likely contain some limit on the
number of times they are allowed to occur (we have not yet
found this necessary within our own Fido applications).

Worker

While the Expander, is responsible for determining the
routing of Fido workflow throughout an agent society, the
Worker is responsible for performing the actual work to be
done at each agent. Like the Expander interface, the Worker
interface only contains one method with two signature
variations: work(...). Both variations accept the agent's
Service Broker to provide access to agent-level services and
return a Result object.

Workers represent the business logic of a particular Fido
task. They execute within a Blackboard transaction, so they
can publish, modify, or gather information without worrying
about other agent services concurrently modifying the
agent’s state. Much of the learning curve for Fido users is
learning how to express a problem in such a way that it can
be enclosed inside a Worker object. Since the same Worker
is executed on all agents that are part of a Fido workflow,
the work(…) method must be able to use the agent’s
services to determine when it is appropriate to execute or
gather particular pieces of information and how to formulate
that information into a Result object.

An Example
Listing 1 contains a very simple example of a Worker,
Result, and Expander implementation that could be used to
fetch and aggregate fuel levels across a Fido-enabled
society. The base classes that the Worker and Result extend
provide several framework-related functions required by the
interface but not unique to a user’s particular
implementation. The Expander is intended to imply a society
in which agents maintain a hierarchy of administrative
relationships with each other. Submitting a request with the
Worker and Expander in Listing 1 would result in the
aggregation of fuel levels across the subtree of the
administrative hierarchy rooted in the initating agent.

class FuelLevelWorker implements Worker,
 extends WorkerBase {
 public Result work(ServiceBroker sb) {
 double level = assessLevel(sb);
 return new FuelLevelResult(level);
 }
 // .. Methods to assess the fuel level
}

class FuelLevelResult implements Result,
 extends ResultBase {
 private double _level = 0;

 public FuelLevelResult(double level) {
 _level = level;
 }
 public void combine(Result other) {
 level += ((FuelLevelResult)other)._level;
 }
}

class AdministrativeSubordinateExpander
 implements Expander {
 public Collection expand(ServiceBroker sb) {
 return fetchAdminSubordinates(sb);
 }
 // code to fetch administrative subordinates
}

Listing 1 - Representative Example

Listing 1 shows how little overhead is required to turn a
business logic component into a distributed Fido process.
Application-specific logic goes within the Worker and, to a
lesser degree, the Result, and helper functions to direct the
workflow within the society go within the Expander. The
Expander, it should be noted, is where all of the
underpinnings of Cougaar’s architecture are most often
exploited.

3. FIDO ARCHITECTURE

The underlying architecture that automates the processing of
Fido workflows is composed of three agent-level Cougaar
plugins. These plugins manage the handling of requests, the
aggregation of results, and the notification of result
completion. These plugins can be added to agents during
configuration time or dynamically injected at run time.

The RequestHandlerPlugin subscribes to incoming Fido
Requests on each agent's Blackboard. When a Request
appears, the plugin uses the enclosed Expander, the request’s
fingerprint, and Fido’s Blackboard cache to assess whether
the request can be handled immediately. If so, the plugin
executes the request's Worker or obtains a cached result and
formulates an immediate response.

If the Expander yields a list of additional society targets or
caching is disabled, the RequestHandlerPlugin spawns
sub-requests off of the incoming request and uses Cougaar’s
MTS to send them to the appropriate targets. After
expansion, the plugin places a record of its expansion on the
Blackboard and retires, becoming quiescent until a new
Request object wakes it again.

When an agent responds to a sub-request, the Result object
is sent via MTS back to the Blackboard of the requesting
agent. Its arrival triggers a Blackboard subscription that
wakes the ResultHandlerPlugin. This plugin keeps track
of incoming partial results and, when all partial results have
returned, initiates the combination process.

The first step in combination is for the expanding agent to
execute the Worker locally to perform its portion of the
work and obtain its contribution to the result. After this
execution, the ResultHandlerPlugin takes this
contributing result and uses it as the base result into which
incoming Partial Results are combined, iterating over the
partial results and passing each one into the combine(...)
method on the contributing result. Finally, it publishes its
completed result to the Blackboard, finalizes the expansion
record, and transmits the result to the requesting agent.

A final plugin, the ResultNotifierPlugin, handles the
asynchronous notification of final result completion. This
plugin subscribes to final results appearing on the agent
Blackboard and notifies any system threads that are waiting
on the request object associated with this final result. Code
that relies on Fido can either simulate a synchronous query
process by blocking on the request notification or can
operate asynchronously by subscribing to the Blackboard for
the result object. We have found the
ResultNotifierPlugin particularly useful in allowing
Fido to expose its services over a Servlet interface. The
servlet issues a request to Fido and then blocks until the
result arrives, allowing the asynchronous workflow to be
wrapped in a synchronous HTTP operation.

4. CONCLUSION AND FUTURE WORK

Fido has become a successful part of distributed agent
applications at BBN, enabling developers to treat arbitrarily
large, complex, and dynamic agent societies as if they are a
single entity that can be operated upon directly. It has been
built into large-scale, agent-based logistics simulations in
which agents may be hosted at the physically disparate
locations that they represent. These scenarios model logistics
efforts, such as hurricane and tsunami relief, dividing the
work among agents that represent real-world entities.

In such applications, Fido provides a mechanism for
distributing high-level control operations, such as the signals
related to logistics planning, and performs maintenance
operations, such as flushing objects off of the Blackboard. It
also serves as a mechanism for assembling dynamic
visualizations of society status to allow users to evaluate the
status of various echelons and entities within the simulation
and iteratively narrow down on problem areas. Finally, it
provides a simple aggregation framework through which
users may ask questions such as, “how many penicillin shots
are left in New Orleans?” Hidden from the Fido user in all of
these cases is that the work required to achieve the desired
result takes place across potentially hundreds of agents.

Limitations and Future Work

While Fido has proven to be a useful addition to the

Cognitive Agent Architecture, there are many opportunities
to improve upon current capabilities and expand upon the
framework:

A Workflow-wide Communications ChannelWhile Fido's
agent-level perspective is often a strength, some mechanism
through which messages could be passed within an existing
workflow could do much to enrich Fido’s capabilities. Such
a channel might allow for more intelligent expansion
decisions that incorporate the status of other branches of the
workflow for load balancing and efficiency purposes.

Subscription-Style Fido ProcessesThe current version of
Fido is strictly a request-response mechanism. This has
proved valuable in many application areas at BBN and has
highlighted the need for continuously running subscription-
style workflows. These processes would begin with a
request-response pattern, but would continue to update the
response as partial and contributing results changed.

Greater Context in Requests. Expanders can make expansion
decisions based on an agent’s full suite of services, but the
current framework does not allow them to append data to the
sub-requests that get sent to these agents. As a result,
contributing agents are merely told that they are a part of the
workflow, not why they are a part of the workflow. Giving
the expander the ability to add this context to individual sub-
requests would lead to a more capable framework overall.

REFERENCES
[1] Cognitive Agent Architecture. http://www.cougaar.org.
[2] I. Foster, C. Kesselman. “Globus: A Metacomputing

Infrastructure Toolkit,” Intl J. Supercomputer
Applications 11(2), 115-128, 1997.

[3] I. Foster, C. Kesselman, J. Nick, S. Tuecke. “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,” 2002.

[4] M. D. Beynon, T. Kurc, Catalyurek, et al. “Distributed
processing of very large datasets with DataCutter,”
Parallel Computing 27, 11, 1457-1478, October 2001.

[5] T. Bellwood, L. Clement, C. von Riegen, et al. UDDI
Version 3.0.1: UDDI Spec Technical Committee
Specification. Organization for the Advancements of
Structured Information Standards, 2003.

[6] J. Dean and S. Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters,” Proceedings of the
6th Symposium on Operating Systems Design and
Implementation (OSDI '04), 137-150, December 2004.

[7] A. Helsinger, M. Thome, T. Wright. “Cougaar: A
Scalable, Distributed Multi-Agent Architecture,” 2004
IEEE Conference on Systems, Man and Cybernetics (2),
1910-1917, October 2004.

[8] Cougaar Architecture Document. BBN Technologies.
December 2004.

[9] Cougaar Developer’s Guide. BBN Technologies.
December 2004

